केन्द्रीय विद्यालय संगठन

KENDRIYA VIDYALAYA SANGATHAN

जयपुर संभाग / JAIPUR REGION

STUDY MATERIAL (MCQ's) FOR TERM -I

CLASS XII APPLIED MATHEMATICS (241)

CHIEF PATRON Sh. B.L. MORODIA DEPUTY COMMISSIONER

PATRON Sh. D R MEENA ASSISTANT COMMISSIONER बी.एल. मोरोडि़या उपायुक्त

B.L. MORODIA Deputy Commissioner

वर्त रग स्पन बेल्दीय विद्यालय श्रीगठन केन्द्रीय विद्यालय संगठन Kendriya Vidyalaya Sangathan क्षेत्रीय कार्यालय /REGIONAL OFFICE

92, गांधीनगर मार्ग, वजाज नगर, 92, GANDHI NAGAR MARG, BAJAJ NAGAR, जयपुर / JAIPUR - 302015 (RAJASTHAN) Website: www.rojalpur.kvs.gov.in E-Mail :kvsjpr@gmail.com /kvsjpr@rediffmail.com Tel.:0141-2704572 Fax -0141-2706882.

No.F. 230350(9)/2021-KVS(JPR)

Dated: 17/09/2021

MESSAGE

Preparation of this STUDY MATERIAL of Class XII Mathematics is the product of academic exercise undertaken by our learned teachers of Mathematics under the guidance and supervision of subject experts. This study material will provide the students a comprehensive, yet concise, learning support tool for consolidation of their studies. It consists of all the units in capsule form, mind maps, concepts with flow charts and MCQs from all the units to prepare students for Term – 1 examination.

The material has been prepared keeping in mind the latest CBSE curriculum and question paper design. This material provides the students a valuable window on precise information and covers all essential components that are required for effective revision of mathematics.

This material will surely prove to be a good tool for quick revision and will serve the purpose of enhancing student's confidence level to help them perform better. Planned study blended with hard work, good time management and sincerity will help the students reach the pinnacle of success.

(B.L MORODIA) DEPUTY COMMISSIONER

Index

	APPLIED MATHEMATICS XII (241)							
S N	Торіс							
1	Revision Material	4 to 16						
2	QP-1 with solution	17 to 28						
3	QP-2 with solution	29 to 38						
4	QP-3 with solution	39 to 49						
5	QP-4 with solution	50 to 62						
6	QP-5 with solution	63 to 74						
7	Q. Bank: Numbers, Quantification and Numerical Applications	74 to 78						
8	Q. Bank: Algebra	78 to 86						
9	Q. Bank: Calculus	86 to 92						
10	Q. Bank: Probability Distribution	92 to 97						
11	Q. Bank: Index Numbers and Time-based Series	97 to 101						

ASSOCIATE CORDINATOR

Sh SANJAY GUPTA VICE PRINCIPAL KV No-5 (II Shift), JAIPUR COORDINATOR Sh RAJESH KANTHARIA PRINCIPAL KV NO-3, JAIPUR

PREPARED BY ALL PGT MATHS OF JAIPUR REGION DURING ONLINE WORKSHOP FROM 16TH SEPT TO 18TH SEPT 2021

Applied Mathematics (Revision Material)

Class – XII

Term - 1 (2021 - 22)

Numbers, Quantification and Numerical Applications

<u>Topics in Syllabus</u>

- 1. Modulo Arithmetic
- 2. Congruence Modulo
- 3. Allegation and Mixture
- 4. Numerical Problems (Boats and Streams, Pipes & Cisterns, Races & Games, Partnership)
- 5. Numerical Inequalities

> MODULO ARITHMETIC

For any four integers a, b, q and r, we have the relationship a = bq + r, $0 \le r \le lbl$.

Here a is dividend, b is divisor, q is quotient and r is the remainder.

Here we write a mod b = r [Example: 14 mod 5 = 4, -8 mod 5 = 2]

<u>Congruence Modulo</u>: When two numbers a and c both leave the same remainder when divided by b, we write a is congruent to c (mod b) or $a \equiv c \pmod{b}$.

Example: $37 \equiv 12 \pmod{5}$ [Since both 37 and 12 leave remainder 2 when divided by 5]

37 - 12 = 25 is an integral of 5 that is $a \equiv c \pmod{b} => (a - c)$ is divisible by b. <u>Properties of Modulo Arithmetic</u>

i. If a + b = c then $a \pmod{n} + b \pmod{n} = c \pmod{n}$

ii. If
$$a \equiv b \pmod{n}$$
 then $a + k = (b + k) \pmod{n}$

- iii. If $a \equiv b \pmod{n}$ and If $c \equiv d \pmod{n}$ then $(a + c) = (b + d) \pmod{n}$
- iv. If $a \equiv b \pmod{n}$ then If $-a \equiv -b \pmod{n}$.
- v. If $a \cdot b = c$ then $a \pmod{n} \cdot b \pmod{n} = c \pmod{n}$
- vi. If $a \equiv b \pmod{n}$ then $ka = kb \pmod{n}$
- vii. If $a \equiv b \pmod{n}$ and If $c \equiv d \pmod{n}$ then $ac = bd \pmod{n}$
- viii. If $a \equiv b \pmod{n}$ then If $a^k \equiv b^k \pmod{n} \notin k \in \mathbb{N}$

> ALLIGATION AND MIXTURE

Allegation means mixing two or more ingredients in some ratio.

Formula 1 : To find the ratio in which two or more ingredients at the given price must be mixed to produce a mixture at desired price.

quantity of cheaper ingredient : quantity of dearer ingredient = d - m : m - c

where c = cheaper price d = dearer price and m = mean price(desired)

Formula 2 : **(Repeated dilution)** – To calculate the pure quantity of a liquid left after 'n' number of repeated dilution.

Suppose a vessel contains 'x' units of liquid from which 'y' units are taken out and replaced by

water, After 'n' number of repeated dilutions, the quantity of pure liquid = $x \left(1 - \frac{y}{x}\right)^n$ units.

> <u>NUMERICAL PROBLEMS</u>

<u>Boats and Streams</u>: Let speed of boat in still water be x km/hr and speed of stream be y km/hr. Then Downstream speed (boat rows in the direction of stream) = u = (x + y) km/hrUpstream speed (boat rows in the opposite direction of stream) = v = (x - y) km/hr

i.
$$x = \frac{u+v}{2}$$
 and $y = \frac{u-v}{2}$

Time taken in upstream $\frac{x+y}{x-y}$

- ii. Time taken in downstream =
- Average speed = $\frac{(x^2-y^2)}{x}$ iii.
- Distance between two places, $d = \frac{t(x^2-y^2)}{2x}$. iv.
- If a boat takes t hours more in upstream than downstream for covering the same v. distance d, then

$$d = \frac{t(x^2 - y^2)}{2y}$$

PIPES AND CISTERNS \geq

Inlet is a pipe to fill the tank; outlet is a tank to empty the tank/reservoir.

Basic Concepts and Formulae

- If a pipe can fill a tank in 'x' hours then part of tank filled in 1 hour = 1/xi.
- If a pipe can empty a tank in 'y' hours then part of tank emptied in 1 hour = 1/yii.
- A pipe can fill the tank in 'x' hrs and another pipe can empty it in 'y' hrs, if bothe iii. pipers are opened simultaneously then

Case I: When y > x; The part of tank filled in 1 hr = $\frac{1}{x} - \frac{1}{y}$ time taken to fill the tank = xу

$$\frac{1}{y-x}$$

Case II: When x > y; The part of tank emptied in 1 hr = $\frac{1}{y} - \frac{1}{x}$ time taken to fill the $tank = \frac{xy}{x-y}$

Two pipes can fill a tank in x and y hours respectively, if both are opened iv. simultaneously then

The part of tank filled in 1 hr = $\frac{1}{x} + \frac{1}{y}$ time taken to fill the tank = $\frac{xy}{x+y}$.

Two pipes can fill a tank in x and y hours respectively and a third pipe can empty it in v. z hours then

The part of tank filled in 1 hr = $\frac{1}{x} + \frac{1}{y} - \frac{1}{z}$ time taken to fill the tank = $\frac{xyz}{yz+zx-xy}$.

RACES AND GAMES

Race is a competition to cover a fixed distance in the least time. A race starts with a starting point and is finished at Finish point/winning point/goal. Suppose there are two participants in a race, then

- 'A gives B a start of x meter' means A starts the race from starting point and B starts from 'x' meter ahead from A. This way, A has to cover a distance 'x' meter more than B.
- ✤ 'A beats B by x meters' means when A reach the finish point, B is x meters behind.
- ✤ 'A can give B 30 points' means A scores 100 points and B scores 70 points.

PARTNERSHIP

When two or more persons join hands for a business and share its profit/loss, they are said to be partners.

Types of partners:

- i. *Working partner*: A partner who invests money and manages the business also is known as working partner. A working partner gets some incentive/salary/profit share for his manual work.
- ii. *Sleeping partner*: A partner who only invests money in the business but does not work for it.

Types of Partnership:

- 1. *Simple Partnership*: The partners invest equal money for different time period or unequal money for same time period.
 - i. Equal money invested for different time period: The profit/loss is distributed in the ratio of time.
 - ii. Unequal money invested for equal time period: The profit/loss is distributed in the ratio of money.
- 2. *Compound Partnership*: Partners invest unequal amount for different time periods. In this case the profit/loss is proportionate to the product of money invested and time.

 $\frac{Share of A in profit/loss}{Share in B in profit/loss} = \frac{xt_1}{yt_2}$; Where x & y is the money invested for time t₁ and t₂ by A and B respectively

NUMERICAL INEQUALITIES

The following mathematical signs represent the inequalities:

'< (Less than), > (Greater than), \leq (Less than or equal to), \geq (Greater than or equal to).

First two (<, >) are known as strict inequalities and the other two (\leq , \geq) as slack inequalities.

Two real numbers or algebraic expressions connected with these signs are called an inequality.

Inequalities which do not involve variables are called Numerical Inequalities [Example: 2 < 3, 5/2 > 1]

Properties of Inequalities

- 1. Any number can be added/subtracted to/from both side of an inequality without changing its sign.
- 2. Any non-zero positive number can be multiplied/divided both side of an inequality without changing its sign. Sign is inverted if a negative number is multiplied/divided.
- 3. The rules of transferring a number from LHS to RHS or RHS to LHS in an inequality are same as in an equation.
- 4. The table given below shows the conclusions related to inequalities:

	6			-	
S.No.	Statement	Conclusion	S.No.	Statement	Conclusion
	x = y + z, z > 0	x > y		$A \ge B \ge C$	
1			5		A≥C
	x = y + z, z < 0	x < y		$A = B \ge C$	
2					
	A > B > C			$A \ge B = C$	
	$A > B \ge C$			$A \le B \le C$	
3	$A \ge B > C$	A > C	6	$A = B \le C$	

	A = B > C			$A \le B = C$	A ≤ C
	A > B = C			A < B < C	
	A < B < C		-	$A \le B < C$	
	$A < B \le C$		7	A < B ≥C	No
	$A \le B < C$	A < C		A > B < C	Conclusion
4	A = B < C			$A \ge B < C$	
	A < B = C			$A > B \le C$	

ALGEBRA

<u>Matrix</u>: In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object. For example,

 $\begin{bmatrix} 2 & -1 & 0 \\ 1 & 3 & 7 \end{bmatrix}$ is a matrix with two rows and three columns; one say often a "two by three matrix",

a "2×3-matrix", or a matrix of dimension 2×3.

Types of matrices

Row matrix ; A matrix with one row, sometimes used to represent a vector [1 2]

<u>Column matrix</u>; A matrix with one column, sometimes used to represent a vector $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Square matrix : A matrix with the same number of rows and columns, sometimes used to represent a linear transformation from a vector space to itself, such as reflection , rotation.

[1	2	1]
3	4	2
L2	1	3]

Addition :

The *sum* A+B of two *m*-by-*n* matrices A and B is calculated entrywise:

 $\begin{array}{c} (A+B)_{ij} = A_{ij} + B_{ij}, \text{ where } 1 \le i \le m \text{ and } 1 \le j \le n. \\ \begin{bmatrix} 1 & 3 & 1 \\ 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 5 \\ 7 & 5 & 0 \end{bmatrix} = \begin{bmatrix} 1+0 & 3+0 & 1+5 \\ 1+7 & 0+5 & 0+0 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 6 \\ 8 & 5 & 0 \end{bmatrix}$

Scalar multiplication : The product *c*A of a number *c* (also called a scalar) and a matrix A is computed by multiplying every entry of A by *c*:

 $(cA)_{i,j} = c \cdot A_{i,j}$. This operation is called scalar multiplication

9	[1	8	-3]	_	$\left\lceil 2 \cdot 1 \right\rceil$	$2\cdot 8$	$\left[\begin{array}{c} 2 \cdot -3 \\ 2 \cdot 5 \end{array} ight]$		2	16	-6]
2.	$\lfloor 4$	$^{-2}$	5]	_	$2 \cdot 4$	$2\cdot -2$	$2 \cdot 5$	_	8	-4	10

Transposition : The *transpose* of an *m*-by-*n* matrix A is the *n*-by-*m* matrix A^T formed by turning rows into columns and vice versa: $(A^T)_{i,j} = A_{j,i}$.

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -6 & 7 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 1 & 0 \\ 2 & -6 \\ 3 & 7 \end{bmatrix}$$

Matrix multiplication : *Multiplication* of two matrices is defined if and only if the number of columns of the left matrix is the same as the number of rows of the right matrix. If A is an *m*-by-*n* matrix and B is an *n*-by-*p* matrix, then their *matrix product* AB is the *m*-by-*p* matrix whose entries are given by dot product of the corresponding row of A and the corresponding column

of B

where $1 \le i \le m$ and $1 \le j \le p$

-			Γ0	1000	Ι.	-	
$ \underline{2} $	$\underline{3}$	$\frac{4}{2}$	1	100	_	3	$\frac{2340}{2}$
$\lfloor 1$	0	0		10		0	$\frac{2340}{1000}\bigg].$
			LU	10	1		

Matrix multiplication satisfies the rules (AB)C = A(BC) (associativity), and (A + B)C = AC + BC as well as C(A + B) = CA + CB (left and right distributivity), whenever the size of the matrices is such that the various products are defined. The product AB may be defined without BA being defined, namely if A and B are *m*-by-*n* and *n*-by-*k* matrices, respectively, and $m \neq k$. Even if both products are defined, they generally need not be equal, that is: AB \neq BA. In other words, matrix multiplication is not commutative.

Row operations

There are three types of row operations:

- 1. row addition, that is adding a row to another.
- 2. row multiplication, that is multiplying all entries of a row by a non-zero constant;
- 3. row switching, that is interchanging two rows of a matrix;

<u>Square matrix :</u>

A square matrix is a matrix with the same number of rows and columns. An *n*-by-*n* matrix is known as a square matrix of order *n*. Any two square matrices of the same order can be added and multiplied. The entries *a_{ii}* form the main diagonal of a square matrix.

Identity matrix ; The *identity matrix* I_n of size *n* is the *n*-by-*n* matrix in which all the elements on the diagonal are equal to 1 and all other elements are equal to 0, for example,

$$\mathbf{I}_1 = [1], \ \mathbf{I}_2 = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}, \ \dots, \ \mathbf{I}_n = egin{bmatrix} 1 & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ dots & dots & \ddots & dots \ dots & dots & dots & dots \ dots & dots & dots \ dots & dots & dots \ dots & dots \ dots & dots \ dots & dots \ dot$$

Symmetric or skew-symmetric matrix:

A square matrix A that is equal to its transpose, that is, $A = A^T$, is a symmetric matrix . If instead, A is equal to the negative of its transpose, that is, $A = -A^T$, then A is a skew symmetric matrix.

Invertible matrix and its inverse ;

A square matrix A is called invertible or *non-singular* if there exists a matrix B such that $AB = BA = I_n$, where I_n is the $n \times n$ identity matrix with 1s on the diagonal and 0s elsewhere. If B exists, it is unique and is called the inverse matrix of A, denoted A^{-1} .

DETERMINANT:

The *determinant* of a square matrix A (denoted det(A) or |A|) is a number encoding certain properties of the matrix. A matrix is invertible if and only if its determinant is nonzero.

The determinant of 2-by-2 matrices is given by

$$\det egin{bmatrix} a & b \ c & d \end{bmatrix} = ad - bc.$$

- 1. The determinant has several key properties that can be proved by direct evaluation of the definition for 2x2 -matrices, and that continue to hold for determinants of larger matrices. They are as follows:first, the determinant of the identity matrix is 1. Second, the determinant is zero if two rows are the same:
- 2. if the two columns are the same

$$igg| egin{array}{c} a & b+b' \ c & d+d' \end{array} = a(d+d') - (b+b')c = igg| egin{array}{c} a & b \ c & d \end{array} + igg| egin{array}{c} a & b' \ c & d' \end{array} \end{array}.$$

3. if any column is multiplied by some number (i.e., all entries in that column are multiplied by that number), the determinant is also multiplied by that number

$$egin{array}{c|c} r\cdot a & b \ r\cdot c & d \end{array} = rad - brc = r(ad - bc) = r \cdot egin{array}{c|c} a & b \ c & d \end{array}$$

Transpose : The determinant of the transpose of A equals the determinant of A

 $\det \left(A^{\mathsf{T}}
ight) = \det (A)$

Multiplication : For square matrices A and B of equal size, the determinant of a matrix product equals the product of their determinants: |AB| = |A||B|

Adjoint matrix : The adjoint matrix adjA is the transpose of the matrix of the cofactors, that is,

$$(\operatorname{adj}(A))_{ij} = (-1)^{i+j} M_{ji}.$$

For every square matrix A

 $(\det A)I = A \operatorname{adj} A = (\operatorname{adj} A) A.$

Thus the adjoint matrix can be used for expressing the inverse of a non-singular matrix. $A^{-1} = \frac{1}{|A|} adjA$

System of linear equations:

A system of linear equations (or linear system) is a collection of one or more linear equations involving the same set of variables. For example

3x + 2y - z = 1

2x - 2y + 4z = -2

-x + y - z = 0 is a system of three equations in the three variables *x*, *y*, *z*.

Matrix equation: The matrix equation is of the form Ax = b

where *A* is an *m×n* matrix, X is a column matrix with *n* entries, and b is a column matrix with *m* entries.

 $A = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad \mathbf{x} = egin{bmatrix} x_1 \ x_2 \ dots \ x_n \end{bmatrix}, \quad \mathbf{b} = egin{bmatrix} b_1 \ b_2 \ dots \ b_m \end{bmatrix}$

Solution set : A solution of a linear system is an assignment of values to the variables x_1 , x_2 , ..., x_n such that each of the equations is satisfied. The set of all possible solutions is called the solution set.

A linear system may have any one of three possible ways:

- 1. The system has *infinitely many solutions*.
- 2. The system has a single *unique solution*.
- 3. The system has *no solution*.

Consistency: A linear system is inconsistent if it has no solution, and otherwise it is said to be consistent

Solution of system of linear equations:

<u>Crammer's rule</u>: Cramer's rule is an explicit formula for the solution of a system of linear equations, with each variable given by a quotient of two determinants. For example, the solution to the system

x + 3y - 2z = 53x + 5y + 6z = 72x + 4y + 3z = 8

is given by

	$5 \\ 7$	$\frac{3}{5}$	$egin{array}{c c} -2 \\ 6 \end{array}$		$\begin{vmatrix} 1 \\ 3 \end{vmatrix}$	5 7	$egin{array}{c c} -2 \\ 6 \end{array}$			$\begin{vmatrix} 1 \\ 3 \end{vmatrix}$	$\frac{3}{5}$	$5 \\ 7$	
<i>m</i> –	8	4	3	<i>a</i> –	2	8	3		~ _	2	4	8	
$x = \cdot$	1	3	$\overline{-2 }$,	y =	1	3	-2	-,	2 -	1	3	-2	
	3	5	6		3	5	6			3	5	6	
	2	4	3		2	4	3			2	4	3	

For each variable, the denominator is the determinant of the matrix of coefficients, while the numerator is the determinant of a matrix in which one column has been replaced by the vector of constant terms.

Matrix method : If the equation system is expressed in the matrix form Ax = b, the entire solution set can also be expressed in matrix form. If the matrix *A* is square matrix and(all *m* rows are independent), then the system has a unique solution given by $x = A^{-1}b$

Where A⁻¹ is inverse of coefficient matrix A and $A^{-1} = \frac{1}{|A|} adjA$

ROW REDUCTION : In row reduction method, the linear system is represented as an augmented matrix:

For example

x + 3y - 2z = 5

3x + 5y + 6z = 7

2x + 4y + 3z = 8

 $\begin{bmatrix} 2 & 4 & 3 & 0 \end{bmatrix}$ This matrix is then modified using elementary row operations until it reaches reduced **row echelon form**.

There are three types of elementary row operations:

1: Swap the positions of two rows.

2: Multiply a row by a nonzero scalar

3: Add to one row a scalar multiple of another.

Because these operations are reversible, the augmented matrix produced always represents a linear system that is equivalent to the original.

 $\begin{bmatrix} 1 & 3 & -2 & | & 5 \\ 3 & 5 & 6 & | & 7 \\ 2 & 4 & 3 & | & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & -2 & | & 5 \\ 0 & -4 & 12 & | & -8 \\ 2 & 4 & 3 & | & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & -2 & | & 5 \\ 0 & -4 & 12 & | & -8 \\ 0 & -2 & 7 & | & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & -2 & | & 5 \\ 0 & 1 & -3 & | & 2 \\ 0 & 0 & 1 & -3 & | & 2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & -2 & | & 5 \\ 0 & 1 & -3 & | & 2 \\ 0 & 0 & 1 & | & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & -2 & | & 5 \\ 0 & 1 & 0 & | & 8 \\ 0 & 0 & 1 & | & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 0 & | & 9 \\ 0 & 1 & 0 & | & 8 \\ 0 & 0 & 1 & | & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 0 & | & 9 \\ 0 & 1 & 0 & | & 8 \\ 0 & 0 & 1 & | & 2 \end{bmatrix} .$

The last matrix is in reduced row echelon form, and represents the system x = -15, y = 8, z = 2.

<u>Leontief input output model :</u>

The model depicts inter-industry relationships within an economy, showing how output from one industrial sector may become an input to another industrial sector. In the inter-industry matrix, column entries typically represent inputs to an industrial sector, while row entries represent outputs from a given sector. This format, therefore, shows how dependent each sector is on every other sector, both as a customer of outputs from other sectors and as a supplier of inputs. Each column of the input–output matrix shows the monetary value of inputs to each sector and each row represents the value of each sector's outputs. Say that we have an economy with n sectors. Each sector produces x_i units of a single homogeneous good. Assume that the jth sector, in order to produce 1 unit, must use a_{ij} units from sector i. Furthermore, assume that each sector sells some of its output to other sectors (intermediate output) and some of its output to consumers (final output, or final demand). Call final demand in the ith sector d_i. Then we might write

$$x_i=a_{i1}x_1+a_{i2}x_2+\cdots+a_{in}x_n+d_i,$$

or total output equals intermediate output plus final output. If we let A be the matrix of coefficients a_{ij}, x be the vector of total output, and d be the vector of final demand, then our

expression for the economy becomes x = Ax + d

which after re-writing becomes (I - A)x = d. If the matrix I - A is invertible then this is a linear system of equations with a unique solution, and so given some final demand vector the required output can be found.

Example: Consider an economy with two goods, A and B. The matrix of coefficients and the final demand is given by

$$A = egin{bmatrix} 0.5 & 0.2 \ 0.4 & 0.1 \end{bmatrix} ext{ and } \mathbf{d} = egin{bmatrix} 7 \ 4 \end{bmatrix}.$$

his corresponds to finding the amount of output each sector should produce given that we want 7 units of good A and 4 units of good B. Then solving the system of linear equations derived above gives us

$$\mathbf{x} = (I - A)^{-1}\mathbf{d} = \begin{bmatrix} 19.19\\ 12.97 \end{bmatrix}.$$

CALCULAS

Some important formulae:

1. $\frac{d}{dx}(x^n) = nx^{n-1}$	9. $\frac{d}{dx}(logx) = 1/x$	Note:
1. $\frac{d}{dx}(x^n) = nx^{n-1}$ 2. $\frac{d}{dx}(sinx) = cosx$	10. $\frac{d}{dx}(sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$	1. Product Rule $(f,g)' = f,g' + g,f'$
3. $\frac{d}{dx}(\cos x) = -\sin x$	11. $\frac{d}{dx}(\cos^{-1}x) = -\frac{1}{\sqrt{1-x^2}}$	
4. $\frac{d}{dx}(tanx) = sec^2 x$	12. $\frac{d}{dx}(tan^{-1}x) = \frac{1}{1+x^2}$	2. Quotient Rule: $\left(\frac{f}{g}\right)' = \frac{g_{,f}' - f_{,g'}}{g^2}$
5. $\frac{d}{dx}(cotx) = -cosec^2x$ 6. $\frac{d}{dx}(secx) = secx.tanx$	13. $\frac{d}{dx}(cot^{-1}x) = -\frac{1}{1+x^2}$	3. Chain Rule:
6. $\frac{d}{dx}(secx) = secx.tanx$	14. $\frac{d}{dx}(sec^{-1}x) = \frac{1}{x\sqrt{x^2-1}}$	dv dv du
7. $\frac{d}{dx}(cosecx) = -cosecx.cotx$	15. $\frac{d}{dx}(cosec^{-1}x) = -\frac{1}{x\sqrt{x^2-1}}$	If $y = f(u), u = g(x)$ then $\frac{dy}{dx} = \frac{dy}{du}, \frac{du}{dx}$
8. $\frac{d}{dx}(a^x) = a^x loga$	16. $\frac{d}{dx}(e^x) = e^x$	4. $(f \pm g)' = f' \pm g'$

Application of derivatives

Increasing / decreasing of functions:

(i) If f'(x) > 0 for all $x \in (a,b)$, then f is increasing on (a,b)

(ii) If f'(x) < 0 for all $x \in (a,b)$, then f is decreasing on (a,b)

(iii) If f'(x) = 0 for all $x \in (a,b)$, then f is constant on (a,b).

Note:1. A function f is said to be *monotonic* on an interval, if it is either increasing or decreasing on that interval.

2. A function y = f(x) is said to have a *critical point* at x = c, if any one of the following conditions is satisfied:

(a) f'(c) = 0 (b) f'(c) is undefined, but f(x) is continuous at x = c.

3. Let y = f(x) be a given function. The points where f'(x) = 0 are called **stationary/critical points** of the function. So, we can find the stationary points of a function y = f(x) by solving the equation f'(x) = 0 for x.

TANGENTS AND NORMALS

1)For the curve y = f(x), $\frac{dy}{dx}$, represents the slope of the tangent to the curve. i.e $m = \frac{dy}{dx}$ at the given point

2) Slope of the tangent to the curve at (x_1, y_1) is $\frac{dy}{dx}](x_1, y_1)$.

3) Equation to the tangent at (x_1, y_1) to a curve y = f(x) with slope m is $y - y_1 = m(x - x_1)$

4) If m is the slope of the tangent to the curve $y = f(x) \operatorname{at}(x_1, y_1)$ then slope of the normal at (x_1, y_1) is -1/m. 5) Equation of normal at (x_1, y_1) is $y = y_1 = \frac{-1}{2}(x - x_1)$

5)Equation of normal at (x_1, y_1) is $y - y_1 = \frac{-1}{m}(x - x_1)$

6) Two lines are parallel if their slopes are equal i.e. m_1 = m_2

7) Two lines are perpendicular if product of their slopes=-1 i.e. $m_1.m_2$ =-1

8)The point where the equation of tangent or normal is asked is lie on the curve.

Maxima & Minima

1)There are two types of extreme positions: *local (relative)* and *global (absolute)*.

2)A function f(x) defined on an interval [a,b] is said to have a *local (or relative) maxima* at a point x = c, if $f(c) \ge f(c+h)$ for all sufficiently small negative as well as positive values of h. The function is said to have a *local (or relative) minima* at x = c, if $f(c) \le f(c+h)$.

3) The point x = c, where f'(c) = 0 or f'(c) does not exist, is called a *critical point* of the function f(x).

4)A maximum or a minimum value of a function is also termed as extremum or extreme value of the function.

5) Let f be function defined in the closed interval I. If there exist a point 'a' in the interval I such that $f(a) \ge f(x)$ for every $x \in I$, then the function is said to attain absolute maximum at x = a, and f(a) is absolute maximum value.

6) Let f be function defined in the closed interval I. If there exist a point 'a' in the interval I such that $f(a) \le f(x)$ for every $x \in I$, then the function is said to attain absolute minimum at x = a, and f(a) is absolute minimum value.

7) To find the absolute maximum or minimum in [a, b] we have to find out the value at the end points of interval [a, b] i.e. f(a) and f(b) along with local maxima and minima. In some cases Local maxima may be less than the local minima.

Tests for maxima or minima:

1) First Derivative Test : If a function f(x) has either local maxima or minima at a point x = c, then either f'(c) = 0 or

f'(c) does not exist, i.e., x = c is a critical point of the function. Of course, there may be functions for which f(c) is not a local

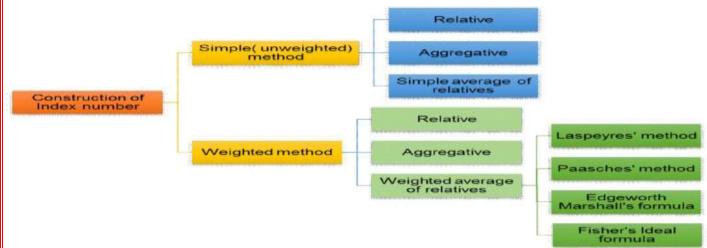
extremum, even when x = c is a critical point of the function.

2) If f'(x) does not change its sign in the neighbourhood of 'x₁', then 'x₁' is neither point of local maxima nor local minima, then x₁ is called the point of inflexion.

Second Derivative Test: Let f'(c) = 0 for a given function f(x) defined on (a,b). Then
 (i) f "(c) < 0 ⇒ f(c) is a local maximum of f(x)
 (ii) f "(c) > 0 ⇒ f(c) is a local minimum of f(x).

Index Numbers and Time Based Series

INDEX NUMBERS


Definition: It is a specialized average designed to measure the changes in the level of an activity or item such as Economy, Price, Value, Trend, Inflation, Purchasing power etc, either with respect to time or geographic location or some other characteristics. It is described either as a ratio or percentage.

Examples: Wholesale Price Index, Consumer Price Index

Classification

i. Price Indexes ii. Quantity Indexes iii. Value indexes iv. Special purpose indexes

<u>Methods of Construction</u>

<u>UNWEIGHTED (SIMPLE) INDEX NUMBERS</u>

Simple (Price) Relative method: It is the price of a certain item in current year to the same in base year expressed as a percentage; that is

Index number $P_{01} = \frac{p_1}{p_0} X100$; where p_1 and p_0 are current year price and base year price respectively.

Simple Aggregative method: In this method the sum of prices of all items under consideration in current year is divided by sum of prices of all the items in base year and multiplied by 100. That is

Index number $P_{01} = \frac{\sum p_1}{\sum p_0} X100$

Simple Average of Price Relatives method: In this method, we first calculate the price relative of each item and then take their average to calculate the index number, that is

 $P_{01} = \frac{\sum \left(\frac{p_1}{p_0} X \, 100\right)}{N}$; Where N is the number of items.

WEIGHTED INDEX NUMBERS

When all items are not of equal importance, we assign weights to each item reflecting their relative importance. Weights are assigned directly or the quantities of items can be used as weights.

Weighted (Price) Relative method: It is the weighted price of a certain item in current year to the same in base year expressed as a percentage; that is

Index number $P_{01} = \frac{p_1 w}{p_0 w} X100$; where $p_1 w$ and $p_0 w$ are weighted current year price and weighted base year price respectively.

Weighted Aggregative method: Index number $P_{01} = \frac{\sum p_1 w}{\sum p_0 w} X 100$

a. Laspeyre's Index Number: In this method, the quantities of the base year (q_0) are taken as weights.

Index number $P_{01} = \frac{\sum p_1 q_0}{\sum p_0 q_0} X \, 100$

b. **Paasche's Index Number:** In this method, the quantities of current year (q₁) are taken as weights.

Index number $P_{01} = \frac{\sum p_1 q_1}{\sum p_0 q_1} X \, 100$

c. <u>Edgeworth Marshall Index Number:</u> In this method, index number is calculated by taking the average of quantities of the base year and the current year.

Index number $P_{01} = \frac{\sum p_1 (q_0 + q_1)}{\sum p_0 (q_0 + q_1)} X \ 100$

d. Fisher's Ideal Index Number: It is equal to the geometric mean of Laspeyre's and

Paasche's index numbers. Index number $P_{01} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0}} X \frac{\sum p_1 q_1}{\sum p_0 q_1} X 100$

Weighted Average of Price Relatives method:

Index number $P_{01} = \frac{\sum \left(\frac{p_1}{p_0} X \ 100\right) X w}{\sum w} = \frac{\sum Iw}{\sum w}$ where $I = \frac{p_1}{p_0} X \ 100$, the price relative.

<u> Test of Adequacy of Index Numbers</u>

There are 4 types of tests:

We have only Time Revers	al Test in the syllabus
iii. Factor Reversal Test	iv. Circular Test
i. Unit Test	ii. Time Reversal Test

<u>Time Reversal Test:</u> If the product of the index number of current year computed on the basis of the base year (P_{01}) and the index number of base year computed on the basis of current year (P_{10}) is equal to 1, that is $P_{01} \times P_{10} = 1$; we say that the method used to calculate the index number works both ways; forward and backward, in respect of time.

Time Reversal Test is satisfied by both Simple Aggregative method and Fisher's method but not by any other.

In Simple Aggregative method $P_{01} = \frac{\sum p_1}{\sum p_0}$ and $P_{10} = \frac{\sum p_0}{\sum p_1}$ => $P_{01} X P_{10} = 1$ In Fisher's method $P_{01} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0}} X \frac{\sum p_1 q_1}{\sum p_0 q_1}$ and $P_{10} = \sqrt{\frac{\sum p_0 q_0}{\sum p_1 q_0}} X \frac{\sum p_0 q_1}{\sum p_1 q_1}$ => $P_{01} X P_{10} = 1$

		Sample O	uestion Paper-1								
	CLASS: XII										
			on: 2021-22								
Applied Mathematics (Code 241)											
	Time Allowed, 00		Гегт - 1	Maximum Marks	_						
	Time Allowed: 90 minutes Maximum Marks: 40 40										
	Concerned to observe at										
	<u>General Instruct</u>		e sections – A, B and C. Each	nart is compulsory.							
		A has 20 MCQs, attempt ar		parenseeinparsory							
	3. Section -	B has 20 MCQs, attempt ar	ny 16 out of 20								
		C has 10 MCQs, attempt ar	-								
		no internal choice in any s ions carry equal Marks.	ection.								
	0. All Quest		CTION – A								
	In		16 questions out of Question	ons 1 – 20.							
		· -	is of 1 mark weightage								
1	The remainder w	hen 16 ⁵³ is divided by 7 i	S								
	(a) 1	(b) 2	(c) 3	(d) 4	1						
	(a) 1	(0) 2	(0) 5	(u) +							
2	Given that x, y an	d b are real numbers and	x < y, $b < 0$, then								
	(a) $\frac{x}{b} < \frac{y}{b}$	(b) $\frac{x}{b} \leq \frac{y}{b}$	(c) $\frac{x}{b} > \frac{y}{b}$	(d) $\frac{x}{b} \geq \frac{y}{b}$	1						
3	A man can row at	: 10 km/hr in still water. I	f the river is running at 2 k	m/hr, it takes him 75							
	minutes to row to	o a place and back. How fa	ar is the place								
				1							
	(a) 4.5 km	(b) 5 km	(c) 6 km	(d) 8 km	1						
	The last true dist		2215								
4	i ne last two digit	s of the product 4321 x 3	5215 are								
	(a) 15	(b) 25	(c) 35	(d) 45	1						
	(a) 13	(0) 23									
5	If A is a square m	atrix such that $A^T A = I$,	then the value of A is	I							
_	1	 ,	11								
	(a) 1	(b) -1	(c) ± 1	(d) 0	1						
6											
	The Cofactor of 7	in the matrix B = $\begin{bmatrix} -3 & 1 \\ 1 & - \end{bmatrix}$	7 is 2 5								
		LI —	در ۲								
	(a) - 1	(b) - 7	(c) 1	(d) 7	1						
7	If A and B are squ	are matrices of the same	order 3, such that $ A = 4$	and $AB = 4I$. Then the							
		17									

	value of <i>B</i> is				
	(a) 4	(b) 16	(c) 32	(d) 64	1
8	The positive value of x	which makes the follo	wing pair of determinan	ts equal is	
		2.			
	$\begin{vmatrix} 2x & 3 \\ 5 & x \end{vmatrix}, \begin{vmatrix} 16 \\ 5 \end{vmatrix}$	3			
	(a) 2	(b) 4	(c) 8	(d) -4 and 4	1
9		Rupees received from t narginal revenue, when	the sale of x units of a pro n x = 15 is	oduct is given by R(x)	
	(a) 116	(b) 96	(c) 90	(d) 126	1
10	The function $y = x^2 - 10$)x+7 is strictly increasi	ng in the interval(s)	1	
	(a) (0, 5) only	(b) $(-\infty, 0)$ only	(c)(5,∞)	(d) R	1
11	The point on the curv	e y=12x-x ² where the s	slope of the tangent is zer	ro.	
	(a) (0,0)	(b) (2,16)	(c) (3,9)	(d) (6,36)	1
12			constituency would not otes she expects from he		
	(a) 100000	(b) 84000	(c) 56000	(d) 36000	1
13	The range of normal d	istribution is			
	(a 0 to 1	(b) 0 <i>to</i> ∞	(c) -1 to 1	(d) $-\infty$ to ∞	1
14	In normal curve, the o	rdinate is highest at			
	(a) mean	(b) Variance	(c) Standard	(d) Not fixed	1
			Deviation		
15	Consider a Poisson dis	tribution for the tossir	ng of a biased coin. The m	lean for this	
	distribution is μ . The s	standard deviation for	this distribution is given	by	
	(a) $\sqrt{\mu}$	(b) μ^2	(c) μ	(d) $\frac{1}{\mu}$	1
16	If X is a Poisson rando	 m variant with mean 3	, them $P\{ X-3 < 1\}$ w	ill be	
	(a) $\left(\frac{99}{8}\right) e^{-3}$	(b) $\left(\frac{9}{2}\right) e^{-3}$	(c) $\left(\frac{9}{8}\right) e^{-3}$	(d) $\left(\frac{3}{2}\right) e^{-3}$	1

17	A random	random variable X has the following probability function											
	X	0	1	2	3	4	5	6	7				
	Р	0	а	2a	2a	3a	a ²	2 <i>a</i> ²	$7a^2 + a$				
	Then P(X	< 3) IS											
	(a) $\frac{3}{10}$		(b) $\frac{5}{10}$		(c) $\frac{3}{8}$			(d) $\frac{3}{5}$					
18	Which ind	lex number	r is called a	as ideal ind	dex numl	ber							
	(a) Laspe	yres	(b) Pa	asches		(c) Fisher		(d) All	l of these	1			
19	19 A manufacturer purchases four distinct raw materials, that differ in unit price as given below:												
	C	OMMODI	ГҮ	UN	IIT PRIC	E (Rs)	UN	IT PRICE	(Rs)				
					Year 2000			Year 2008					
		А		3.20			3.8						
		B		1.70			2.1						
		C		148.10			149.50						
		D	agata prize	indox for	34)8 using year	2000 as t	45	priod in				
					year 200		2000 as t						
	(a) 97		(b) 10		7 (c) 117			(d) 12	7	1			
20	The best a	verage for	construct	ing an ind	ex numb	er is							
	(a) AM		(b) GI	М		(c) HM		(d) All	of these	1			
	<u>SECTION – B</u> In this section, attempt any 16 questions out of the Questions 21- 40. Each Question is of 1-mark weightage.												
21	In a 500 m the course		Sophia bea	ats Avni by	y 20 meti	es or 4 seco	nds. Then	Sophia's t	ime over				
	(a) 25 sec	conds	(b) 96	5 seconds		(c) 100 sec	conds	(d) 10	4 seconds	1			
L	1			-	19								

22	It is 7:00 P.M. currently	. What time (in A.M. or P.M	1.) will be in next 1500 h	ours?	
	(a) 7:00 PM	(b) 9.10 AM	(c) 7:00 AM	(d) 10.40 PM	1
23	A, B and C hire a shed for	or Rs2190. A put in 10 cov	vs for 20 days; B 30 cows	s for 8 days and C	
	16 cows for 9 days. The	en the rent of C is		-	
	(a) Rs 540	(b) Rs750	(c) Rs900	(d) Rs450	1
24	If η (n) = Sum of all pos	itive divisors of n, n ∈ N, th	ien Ŋ(35) is equal to		
	(a) 38	(a) 48	(a) 35	(a) 1225	1
25	In an examination out o	of 500 students, 70% boys	and 80% girls are passed	l. If total pass	
	percentage was 76%, tl	nen the number of girls are	2		
	(a) 200	(b) 236	(c) 284	(d) 300	1
26	If A and B are symmetr	ic matrices of same order,	then what can be said for	r matrix AB – BA	
	(a) Symmetric	(b) Skew Symmetric	(c) Null Matrix	(d) Unit Matrix	1
	matrix	matrix			
27	If matrix $A = \begin{bmatrix} a & 3 \\ -3 & b \\ -2 & -1 \end{bmatrix}$	2 1 is skew symmetric, the c	n value of $a + b + c$ is		
	(a) 1	(b) -1	(c) 0	(d) 2	1
28	Find $\frac{dy}{dx}$, if x = at ² , y =	2at	I		
	(a) $\frac{1}{t}$	(b) $\frac{1}{t^2}$	(c) $\frac{1}{t^3}$	(d) $\frac{1}{t^4}$	1
29	The price per unit of a d	commodity produced by a	company is given by p= 3	30 -2x and 'x' is the	
	quantity demanded. Fir are	nd the revenue function R,	the marginal revenue wh	nen 5 commodities	
	in demand (or produce	d).			
	(a) 10	(b) 20	(c) 30	(d) 40	1
30	The equations of the i	normals to the curve 3x ²	- y ² = 8, parallel to the 1	line x + 3y = 4 are	
	(a) $x - 3y - 8 = 0a$	and $x + 3y + 8 = 0$	(b) $x + 3y - 8 = 0$	and $x + 3y +$	
			8 = 0		
		20			·1

	(c) $x + 3y - 8 = 0a$	ind – x + 3y	+ 8 = 0	(d) No	ne of these			1
31	A salesman wants to kn sales records and come	-			-	ales call.	He check past	
	Sales (in units)	0	1	2	3	4	5	
	Probability	0.15	0.20	0.10	0.05	0.30	0.20	
	His expected value of th	ne number of ur	nits he sells	s per sale	call is			
	(a) 1.00	(b) 2.25		(c) 2.50	0	(d)	2.75	1
32	Jobs arrive at a factory	at an average ra	ate of 5 in a	an 8 hour	s shift. The	arrival of	f the jobs	
	following Poissions dis	tribution. The a	verage ser	vice time	of job on th	ie factory	v is 40 minutes.	
	The service time follow shift will be	s exponential d	istribution	. Ideal tir	ne (in hour	s) at the	factory per	
	(a) $\frac{5}{7}$	(b) $\frac{14}{3}$		(c) $\frac{7}{5}$		(d)	$\frac{10}{3}$	1
33	A traffic engineer record records that an average number of bicycles the probability that 2 or le	ge of 3.2 bicycle hat use the cy	e riders us ycle track	e the cyc follow	le track eve a Poisson	ery hour. distribut	Given that the tion, Then the	
	(a) 0.21	(b) 0.54		(c) 0.17	71	(d)	0.381	1
34	A die is thrown again a the third 5 in the seven	-		e obtaine	d. Find the	probabili	ity of obtaining	
	(a) $C_3^6 \left(\frac{1}{6}\right)^3 \left(\frac{5}{6}\right)^3 \frac{1}{6}$	(b) $C_2^6 \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^2$	$\left(\frac{5}{6}\right)^4 \frac{1}{6}$	(c) C ₃ ⁶	$\left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^4 \frac{1}{6}$	(d) C ₂ ⁶	$\left(\frac{1}{6}\right)^3 \left(\frac{5}{6}\right)^3 \frac{1}{6}$	1
35	Given that the scores of test has a mean of 100 a who takes the test will	and a standard	deviation o	of 10, The	-			
	(a) 0.8413	(b) 0.1587		(c) 0.30	658	(d)	0.6826	1
36	During a certain period of a worker is also raise much amount in real te	ed from 325 to 5	0	0			•	
	(a) worker actually	(b) worker ac	tually	(c) wor	rker actuall	y (d)	worker	1
	loses = $Rs45.45$ in	gains = Rs45.4	45 in real	gains =	Rs50 in rea	l act	cually gains =	
						•		• •

	real terms.	terms.	terms		Rs90 in real	
					terms	
37	Which of the following	measure the general ch	anges in the price level	from	one period to	
	another					
	(a) Value Index	(b) Quantity Index	(c) Price Index		(d) None of	1
	Numbers	Numbers	Numbers		above	
38	The price index using v	veighted average of rela	tive method for the foo	d con	sumption in a	
	student hostel in a mor	th taking data of year 1	997 as base year for cal	lculat	tions is	
	COMMODITY	WEIGHT	PRICE PER UNIT			
			1997	200)1	
	Rice	14 quintals	90	120)	
	Wheat	20 kg	30	46		
	Pulses	35 kg	22	34		
	Milk	15 litres	50	90		
	(a) 152.7	(b) 172.7	(c) 167.2		(d) 176.4	1
39	The whole sale price in	dex of rice in 2012 com	pared to 2010 is 130. If	the c	cost of rice was	
	Rs22 per kg in 2010 ca	culate the cost in 2012				
	(a) Rs28.60	(b) Rs 30.45	(c) Rs25.50		(d) Rs27.80	1
40	The Time reversal test	t is satisfied by				
	(a) Laspeyres index	(b) Paasches index	(c) Both Laspeyres		(d) Fishers ideal	1
	only	only	and Paasches index	ĸ	index	
			numbers			
		SECTIO	DN – C	I		
		section, attempt any 8 nark weightage. (Ques	questions out 10 Que			
41	Lavanya plans to spend	l less than Rs 5000 on a	n electric dryer, includi	ng th	e 9% GST and a	
		22				

	De 640 estus charge Th	nen the range of selling pri	co (without CST) in which	h cho can afford	
		len the range of sening pri	ice (without GST) in whit		
	the dryer is				
	(a) Less than Rs	(b) Less than Rs 4360	(c) More than Rs	(d) More than Rs	1
	4000		4000	4360	
42	In 1 minute $\frac{4}{7}$ of a buck	ket is filled. Then the time	in which the rest of buck	tet can be filled is	
	(a) $\frac{4}{7}$ minute	(b) $\frac{3}{7}$ minute	(c) $\frac{7}{4}$ minute	(d) $\frac{3}{4}$ minute	1
43	A toy manufacturing fir	m assesses its variable cos	st to be 'x' times the sum	of 30 and 'x',	
	where 'x' is the number	• of toys produced, also the	e cost incurred on storage	e is Rs 1500. Find	
		and the marginal cost when	_		
	(a) 60	(b) 70	(c) 80	(d) 90	1
44	A particular river near average.	a small-town floods and o	verflows twice in every 1	0-years on an	
	-	son distribution is approp	riate, what is the mean ex	pectation. Also	
	calculate				
	the probability of 3 or l	ess overflow floods in a 10)-year interval.		
	(a) 0.18	(b) 0.86	(c) 0.54	(d) 0.72	1
45	In a district, exam score	es of 300 student of class X	III are recorded at the end	d of the session.	
		rks in total out of 1000. Th	-		
		was calculated to be 180. '	Then the score of Ramesl	n in compare to his	
	batch mates in the who	le district was			
	(a) Ramesh did better	than 65.82% of students in	n the district.		
	(b) Ramesh did better	than 67.68% of students in	n the district.		
	(c) Ramesh did better	than 71.23% of students in	n the district.		
	(d) Ramesh did better	than 76.43% of students in	n the district.		1
		CASE STU	JDY		
	A factory produces thre	ee items every day. Their p	production on certain day	is 45 Tons. It is	
	found that the producti	on of third item exceeds th	ne production of first iter	n by 8 tons while	
	the total production of	first and third item is twic	e the production of secor	id item.	
	1				<u> </u>

	Answer the followin	g question.			
46	If x, y, z respectively de	note the quantity (in tons) of first, second and third	d item produced,	
	then which of the follow	ving is true?		-	
	(a) w b w b π $-4F$	(b) $x + \theta = \pi$	(a) $x = 2x + z = 0$	(d) All of these	1
	(a) $x + y + z = 45$	(b) $x + 8 = 2$	(c) $x - 2y + z = 0$	(a) An of these	1
47	If $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & -2 \\ 1 & -1 & 1 \end{bmatrix}^{-1} = -1$	$\begin{bmatrix} 2 & 2 & 2 \\ 3 & 0 & -3 \end{bmatrix}$			
	$\begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$	[1 -2 1]			
	Then the inverse of $\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 \\ 0 & -1 \\ -2 & 1 \end{bmatrix}$ is			
	$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$	$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$	$\begin{bmatrix} \frac{1}{2} & 0 & \frac{-1}{2} \end{bmatrix}$	(d) None of	1
	(a) $\begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{2} & 0 & \frac{-1}{2} \\ \frac{1}{6} & \frac{-1}{3} & \frac{1}{6} \end{bmatrix}$	(b) $\begin{vmatrix} 3 & 2 & 6 \\ \frac{1}{2} & 0 & \frac{-1}{2} \end{vmatrix}$	(c) $\begin{bmatrix} \frac{1}{2} & 0 & \frac{-1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{6} & \frac{-1}{3} & \frac{1}{6} \end{bmatrix}$	these	
	$\begin{bmatrix} \frac{2}{1} & -\frac{1}{2} & \frac{2}{1} \\ \frac{1}{6} & \frac{3}{2} & \frac{1}{6} \end{bmatrix}$	$\begin{bmatrix} 3 & -1 & 3 \\ -1 & -1 & 1 \\ -6 & 3 & 6 \end{bmatrix}$	$\begin{bmatrix} 3 & 3 & 3 \\ 1 & -1 & 1 \\ 6 & 3 & 6 \end{bmatrix}$		
		0 3 0	0 5 0		
48	x : y : z is equal to				
	(a) 12:13:20	(b) 11:15:19	(c) 15:19:11	(d) 13:12:20	1
49	Which of the following	is true			
	(a) $ adj A = A ^{n-1}$	¹ ,where n is order of the r	natrix A		
	(L_{1}) $(AI) = 1$ $(A = 1)I$				
	(b) $(A')^{-1} = (A^{-1})'$	=A is skew symmetric ma	atrix of odd then $ A = 0$		
	(c) A is skew symme	etric matrix of odd then	4 = 0		
	(d) If $A = [a_{ij}]_{3\times 3}$	then $ K, A = K^3 A $			1
			-		
50	Which of the following	is true in the given detern	ninant of A, where $A = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$	$a_{ij}]_{3\times 3}$	
	(a) Order of minor	is less than order of the d	let (A)		
	(b) Value if a deter	minant is obtained by mu	ltiplying elements of a ro	w or column by	+
	corresponding c	ofactors.			
	(c) Order of minor	s and cofactors of same el	ements of A is same.		1
	(d) All of these.				

Sample Question Paper -1 (Marking Scheme)

Class : XII (Applied Mathematics) Session: 2021-22

QN	Correct Option	Hints / Solution
1	d	$16^{53} \equiv 2^{53} \pmod{7} \equiv 8^{17} 2^2 \pmod{7} \equiv 4 \pmod{7}$
2	С	$\frac{x}{b} > \frac{y}{b}$
3	С	Speed downstream = 12 km /hr and Speed upstream = 8 km /hr
		$\frac{x}{12} + \frac{x}{8} = \frac{75}{60} \implies x = 6 \text{ km}$
4	а	(4321 x 3215) mod 100 = (21 x 15) mod 100 = 315 mod 100 = 15
5	С	$ A^{T}A = I \Rightarrow A ^{2} = 1 \Rightarrow A = \pm 1$
6	d	$C_{23} = - \begin{vmatrix} 2 & 3 \\ 1 & -2 \end{vmatrix} = 7$
7	b	$ AB = 4I = 4^3 I = 64$
		$ AB = A B \implies 64 = 4 B \implies B = 16$
8	b	$2x^2 - 15 = 32 - 15 \implies x = \pm 4 \text{ but } x > 0. \implies x = 4$
9	d	126
10	С	(5,∞)
11	d	(6,36)
12	b	84000
13	d	$(-\infty to \infty)$
14	а	Mean
15	а	$\sqrt{\mu}$
16	b	$\left(\frac{9}{2}\right)e^{-3}$
17	а	Paasche's' index
18	С	Fisher
19	d	100
20	b	GM
21	b	Time taken by Avni to cover the course is $=\frac{4}{20} \times 500 = 100$ seconds

		Time taken b	y Sophia ove	er Avni is = 1	00 - 4 = 96	seconds		
22	с	(2+45)mod7	= 5 mod 7	i.e. Friday				
23	а	Ratio of rent	to be paid by	v A,B,C = 10 x	x 20 : 30 x 8	$3:16 \ge 9 = 2$	5:30:18	
		C's share of re	ent = $\frac{18}{73} \times 2$	2190 = Rs 5	540			
24	с	η(35) = 1 +5	+7 + 35 = 48	}				
25	d	Ratio of boys	and girls =	$2:3 \Rightarrow N$	umber of g	irls = $\frac{3}{5} \times 50$	00 = 300	
26	b	(AB - BA) ^c	= -(AB - AB)	BA)				
27	с	a = 0 , b = 0 , c	c = 0 so a +	b + c = 0				
28	а	$\frac{1}{t}$						
29		Revenue func	tion is, R= p	x= (30x – 2x	2)			
	а	MR=3	30-4x					
		MR w	hen 5 comm	odities are i	n demand i	s Rs 10.		
30	b							
31	b		$f'(x) = x^3$	$x^3 - 6x^2 + 1$	1x - 6 = 0	(x-1)(x-2)	(x-3)	
				f'(x) =	$x = 0 \Rightarrow x =$	1,2,3		
		interv	al	Sign of f	(x)	Nature of f(x)	
		(−∞, 1	1)	-		Decreasing	g	
		(1,2))	+		Increasing	<u>g</u>	
		(1,2))	-		Decreasing	g	
		(3,∞)	+		Increasing	5	
32	b		I	$\lambda = \frac{5}{8},$	$\mu = \frac{3}{2}$	$\rho = \frac{5}{12}$		
				Ideal	time = 1 – <i>p</i>	$p = \frac{7}{12}$		
			Therefore, i	dle time for	8- hour shi	$ft = \frac{7}{12} \times 8 =$	$\frac{14}{2}$ hours	
33	d					12	3	
33	u	v	0	1	n	2	Л	
		X P	0	1 0.20	2 0.10	3 0.05	4 0.30	5 0.20
		P XP	0.15	0.20	0.10	0.05	1.20	1.00
			-				0	

		E(X) = 0.20 + 0.20 + 0.15 + 1.20 + 1.00 = 2.75
34	b	P(third 5 on seventh throw of die)
		= P(two 5s' onsix throws) X P(a 5 on the next single thrown of die)
		$= C_2^6 \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^4 \frac{1}{6}$
35	d	P(90 < X < 110) = P(X < 110) - P(X < 90)
		P(90 < X < 110) = P(-1 < Z < 1) = P(Z < 1) - P(Z < -1)
		= 0.8413 - 0.1587 = 0.6826
36	b	The probability of obtaining two head and one tail is = $\frac{3}{8}$
37	d	$E(X) = Var(X) = \lambda = 3.2$
		Therefore $P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0.041 + 0.13 + 0.21 = 0.381$
38	a	Weighted price = $I_{2001} = \frac{5140}{3380} \times 100 = 152.07$
39	b	Therefore, the index of the year 2008 on the base year $2000 = I_{2000} = \frac{200.4}{187} \times 100$
		= 107.165 = 107.2
40	а	
41	a	$x + 0.09x \ 640 < 5000 \implies x < 4000$
42	u	4
72	4	Since, $\frac{1}{7}$ part of bucket is filled in 1 minute.
	d	therefore 1 part of bucket is filled in $\frac{7}{4}$ minute
		$1 - \frac{4}{7} = \frac{3}{7}$ part of bucket is filled in $\frac{7}{4} \times \frac{3}{7} = \frac{3}{4}$ minute
43		The total cost function C(x) is given by,
		$C(x) = x (x + 30) + 1500 = x^2 + 30x + 1500$
	b	The marginal cost MC is given by, MC= $Dc/dx= 2x+30$
		Marginal cost of producing 20 toys is MC (20) = dC /dx] _{x=20} = 2(20)+ 30 = 70
44		As the average event of flood overflow, in every 50-years is two
	b	In the given Poisson distribution, = 2
		The goal is to find P(X 3)
		As

		P(X=0) = = 0.14
		P(X = 1) = = 0.27
		P(X=2) = = 0.27
		P(X = 3) = = 0.18
		Therefore, $P(X 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)$
		= 0.14 + 0.27 + 0.27 + 0.18 = 0.86
45		Firstly, we need to find Ramesh's Z-Score and use the respective z-table before we determine how well he has performed as compared to his batch mates
		As
		$\mu = 700 \text{ and } \sigma = 180 \text{ and } x = 800$ $z = \frac{800-700}{180} = 0.56$
		Once you have the Z-Score, the next step is choosing between the two Z- tables.
		In the Z-table, go vertically down on the leftmost column to find the value of the first two digits of your Z Score (0.5 in this case) and then go alongside on the topmost row to find the value of the digits at the second decimal position (.06 in this case). Once you have mapped these two values, the intersection of the row of the first two digits and column of the second decimal point in the table
		gives the value 0.7123 i.e. the area on the left of ordinate corresponding to Z = 0.56. This area also represents the probability of scoring < 800 marks.
		Lastly, to get this as a percentage we multiply that number with 100 i.e. 0.7123 x 100 = 71.23%.
		Hence, we can say that Ramesh did better than 71.23% of students in the district
46		According to the question
	d	x + y + z = 45 <i>i</i> $x + 8 = z$ <i>ii</i>
		x + z = 2y ie $x - 2y + z = 0$ iii
47	b	$\begin{bmatrix} \frac{1}{3} & \frac{1}{2} & \frac{1}{6} \\ \frac{1}{3} & 0 & \frac{-1}{3} \\ \frac{1}{6} & \frac{-1}{3} & \frac{1}{6} \end{bmatrix}$
48	b	$X = (B')^{-1}C = \begin{bmatrix} \frac{1}{3} & \frac{1}{2} & \frac{1}{6} \\ \frac{1}{3} & 0 & \frac{-1}{3} \\ \frac{1}{6} & \frac{-1}{3} & \frac{1}{6} \end{bmatrix} \begin{bmatrix} 45 \\ -8 \\ 0 \end{bmatrix} = \begin{bmatrix} 11 \\ 15 \\ 19 \end{bmatrix}$
49	d	If $A = [a_{ij}]_{3\times 3}$ then $ K.A = K^3 A $

	0 d All of the	ese.			
		Term- 1: So Cla	estion Paper -2 ession 2021-22 ass- XII d Mathematics (242	1)	
	Section - A has 20 M Section - B has 20 M Section - C has 10 M	nS: contains three sect CQs, attempt any 16 CQs, attempt any 16 CQs, attempt any 8 clobice in any section equal Marks.	tions – A, B and C. Each 5 out of 20. 5 out of 20 5 out of 10. 5 on.	ximum marks	
ſ	n this section, atter	npt any 16 question	TION – A s out of Questions 1 – weightage.	20. Each Questior	ı is of 1-
	[(3 × 7) + 5] (mod	4) is			1
	(a) 4	(b) 2	(c) 5	(d) 3	
	If $x \in R$, $ x < 3$, the				1
	(a) $-3 < x < 3$ 3	(b) 3 < x < -3	(c) x = φ	(d) -3 < x ≤	
	It is currently 8:00	A.M. What time (in A	.M. or P.M) will be in ne	xt 500 hours?	1
	(a) 4:00 A.M. P.M.	(b) 2:00 P.M.	(c) 4:00 P.M.	(d) 3:00	
			to a leakage in the botto will it take for the leaka		1
	(a) half an hour hours	(b) 1 hour	(c) 2 hours	(d) 4	
5	If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$	$\left[f \right], \text{then } A + A^T = I, \text{ then } f$	the value of α is		1
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{3}$	(c) $\frac{3\pi}{2}$	(d) π	
		10 21	r matrix, if the value of b		1

	(d) does not exist	(c) 0	(b) 3	(a) -3	
1	adj.A) is equal to (d) 4	id A = -2, then adj (c) 16	matrix of order 3 a (b) 0	If A is a square (a) -8	7
1	amer's rule, we get	ns in 3 variables by C	em of linear equation	If solving a syst	8
	stem of linear	non-zero then the sy	t one of Δ <i>x</i> , Δ <i>y</i> , Δ <i>z</i> i	Δ = 0 and at lease equations has	
	y solutions (d)	n (c) infinitely man	(b) unique solutio	(a) no solution trivial solution	
1	g in every interval,	9x + 3 is increasin	$f(x) = k x^3 - 9x^2$	If the function then:	9
	(d) k ≤ 3	(c) k > 3	(b) k < 3	(a) k > 3	
1		sing in the interval	$x = x^2 - 2x$ is decreased	0 The function f(10
	(d) None of	(c) (-1,∞)	(b) (-∞,1)	(a) (1,∞) these	
	· · · · · · · · · · · · · · · · · · ·	ırve y=sin x at (0,0) i	the normal of the c	1 The equation of	
1		11 ve y=311 x at (0,0) i	the normal of the t	I I lie equation of	11
1	(d) x - y=0	(c) x + y=0	(b)x=0	(a)y=0	11
1	(d) x - y=0 espectively to start a	(c) x + y=0	(b)x=0 ested ₹45,000, ₹7 ne end of2 years, t	(a)y=0 ² A, B and C inv	11
	(d) x - y=0 espectively to start a of ₹164,000. B's	(c) x + y=0 ,000 and ₹90,000 r	(b)x=0 ested ₹45,000, ₹7 ne end of2 years, t rofit is	(a)y=0 ² A, B and C inv business. At th share in the p	
	(d) x - y=0 espectively to start a of ₹164,000. B's (d) ₹72,000	(c) x + y=0 ,000 and ₹90,000 n hey earned a profit (c) ₹ 56,000	(b)x=0 ested ₹45,000, ₹7 ne end of2 years, t rofit is (b) ₹ 36,000	 (a)y=0 A, B and C inv business. At th share in the p (a) ₹ 64,000 If the mean and 	
1	(d) x - y=0 espectively to start a of ₹164,000. B's (d) ₹72,000	(c) x + y=0 ,000 and ₹90,000 n hey earned a profit (c) ₹ 56,000	(b)x=0 ested ₹45,000, ₹7 e end of2 years, t cofit is (b) ₹ 36,000 the variance of a pr en the probability o	 (a)y=0 A, B and C inv business. At th share in the p (a) ₹ 64,000 If the mean and 	12
1	(d) x - y=0 espectively to start a of ₹164,000. B's (d) ₹72,000 are 4 and 2 (d) $\frac{37}{256}$	(c) x + y=0 ,000 and ₹90,000 r hey earned a profit (c) ₹ 56,000 obability distribution two successes is	(b)x=0 ested ₹45,000, ₹7 the end of2 years, the cofit is (b) ₹ 36,000 the variance of a pre- the probability of c) $\frac{7}{64}$	 (a)y=0 2 A, B and C inv business. At th share in the p (a) ₹ 64,000 3 If the mean and respectively, th (a) ¹/₂ (12
1	(d) x - y=0 espectively to start a of ₹164,000. B's (d) ₹72,000 are 4 and 2 (d) $\frac{37}{256}$ t least once is	(c) x + y=0 ,000 and ₹90,000 m hey earned a profit (c) ₹ 56,000 Debability distribution two successes is (c) $\frac{219}{256}$	(b)x=0 ested ₹45,000, ₹7 the end of2 years, the cofit is (b) ₹ 36,000 the variance of a pre- the probability of c) $\frac{7}{64}$ in twice, the probability	 (a)y=0 2 A, B and C invibusiness. At the share in the p (a) ₹ 64,000 3 If the mean and respectively, the (a) 1/2 (c) 4 A dice is thrown 	12
1	(d) x - y=0 espectively to start a of ₹164,000. B's (d) ₹72,000 are 4 and 2 (d) $\frac{37}{256}$ t least once is	 (c) x + y=0 ,000 and ₹90,000 model a profit (c) ₹ 56,000 (c) ₹ 56,000 (c) 219/256 (c) 219/256 (c) 219/256 	(b)x=0 ested ₹45,000, ₹7 the end of2 years, the cofit is (b) ₹ 36,000 the variance of a pro- ten the probability of b) $\frac{7}{64}$ twice, the probability $\frac{7}{2}$ (c) $\frac{35}{36}$	(a)y=0 2 A, B and C inv business. At th share in the p (a) ₹ 64,000 3 If the mean and respectively, th (a) $\frac{1}{2}$ (4 A dice is thrown (a) $\frac{11}{36}$ (b) $\frac{1}{12}$	12
1	(d) x - y=0 espectively to start a of ₹164,000. B's (d) ₹72,000 are 4 and 2 (d) $\frac{37}{256}$ t least once is	 (c) x + y=0 ,000 and ₹90,000 mey earned a profit (c) ₹ 56,000 (c) ₹ 56,000 (c) ±56,000 (c) ±19/256 (c) ±19/256 (d) none of the 	(b)x=0 ested ₹45,000, ₹7 a end of2 years, t rofit is (b) ₹ 36,000 the variance of a pre- en the probability of b) $\frac{7}{64}$ a twice, the probability $\frac{7}{2}$ (c) $\frac{35}{36}$ variable such that 1	(a)y=0 2 A, B and C inv business. At th share in the p (a) ₹ 64,000 3 If the mean and respectively, th (a) $\frac{1}{2}$ (4 A dice is thrown (a) $\frac{11}{36}$ (b) $\frac{1}{12}$	12 13 14

	h (d)None	istribution (c)Bot	n (b) Normal d	(a)Binomial distribu	
1	tes in three throws	ition of number of six	bability distribu	Find the variance of of a die.	17
	iese	(d) None of th	(c) $\frac{7}{12}$	(a) $\frac{5}{12}$ (b) $\frac{1}{2}$	
1	-	relative) of rice in 2 24 per kg in 2015, c		The wholesale price	18
	(d) ₹36	(c) ₹56	(b) ₹72	(a) ₹64	
1				(a) $₹ 64$ 9 If $\frac{ x+1 }{x+1} > 0, x \in \mathbb{R}$, the	19
	(d) x ∈ (- ∞, -	(c) x ∈ (- ∞, -1)) x ∈ (- 1, ∞)	(a) x ∈ [- 1, ∞) 1)	
1	on selling the	milk to gain $16\frac{2}{3}\%$ o	er be mixed with) In what ratio must w	20
				mixture at cost price	
	d) 2:3	c) 6:1	b) 4:3	a) 1:6	
stion is	s 21 - 40. Each Que		y 16 questions	this section, attempt	In t
stion is	ile it comes back	out of the Questions k weightage. nstream in 1 hour whi	y 16 questions 1-mar n distance dowr	A boat covers a cer	In t 21
	ile it comes back	out of the Questions k weightage.	y 16 questions 1-mar n distance dowr	A boat covers a cer	
	ile it comes back ne speed of boat in	out of the Questions k weightage. nstream in 1 hour whi	y 16 questions 1-mar n distance dowr ed of the stream	A boat covers a cert in $1\frac{1}{2}$ hours. If the s still water?	
	ile it comes back he speed of boat in (d) 15km/h	out of the Questions k weightage. hstream in 1 hour whi be 3 km/h, what is th	y 16 questions 1-mar n distance dowr ed of the stream b) 13 km/h while B runs 25	A boat covers a cell in $1\frac{1}{2}$ hours. If the s still water? (a) 12 km/h	
1	ile it comes back he speed of boat in (d) 15km/h	out of the Questions k weightage. Instream in 1 hour whi I be 3 km/h, what is th (c) 14 km/h	y 16 questions 1-mar n distance dowr ed of the stream b) 13 km/h while B runs 25 nce B beats A?	 A boat covers a cert in 1¹/₂ hours. If the still water? (a) 12 km/h A can run 22.5 me race. How much display the still water in the still water. 	21
1	ile it comes back he speed of boat in (d) 15km/h ne. In a 1000 m	out of the Questions k weightage. hstream in 1 hour whi be 3 km/h, what is th (c) 14 km/h meter in the same tin (c)40 meter	y 16 questions 1-mar n distance dowr ed of the stream b) 13 km/h while B runs 25 nce B beats A? (b) 120 meter	A boat covers a cert in $1\frac{1}{2}$ hours. If the s still water? (a) 12 km/h A can run 22.5 me race. How much di (a) 200 meter meter	21
1	ile it comes back he speed of boat in (d) 15km/h ne. In a 1000 m	out of the Questions k weightage. hstream in 1 hour whi be 3 km/h, what is th (c) 14 km/h meter in the same tin (c)40 meter	y 16 questions 1-mar n distance dowr ed of the stream b) 13 km/h while B runs 25 nce B beats A? (b) 120 meter $\frac{2}{x}$ has local min	A boat covers a cert in $1\frac{1}{2}$ hours. If the s still water? (a) 12 km/h A can run 22.5 me race. How much di (a) 200 meter meter B The function $f(x) =$	21
1	ile it comes back he speed of boat in (d) 15km/h ne. In a 1000 m (d) 100	out of the Questions k weightage. hstream in 1 hour whi be 3 km/h, what is th (c) 14 km/h meter in the same tin (c)40 meter imum at (c) x = -2	y 16 questions 1-mar n distance dowr ed of the stream b) 13 km/h while B runs 25 nce B beats A? (b) 120 meter $\frac{2}{x}$ has local min (b) x = 2	A boat covers a cell in $1\frac{1}{2}$ hours. If the s still water? (a) 12 km/h A can run 22.5 me race. How much di (a) 200 meter meter B The function $f(x) =$ (a) $x = 1$ 1	21
1 1 1	ile it comes back he speed of boat in (d) 15km/h ne. In a 1000 m (d) 100	out of the Questions k weightage. hstream in 1 hour whi be 3 km/h, what is th (c) 14 km/h meter in the same tin (c)40 meter imum at (c) x = -2	y 16 questions 1-mar n distance dowr ed of the stream b) 13 km/h while B runs 25 nce B beats A? (b) 120 meter $\frac{2}{x}$ has local min (b) x = 2 then A is symme	A boat covers a cert in $1\frac{1}{2}$ hours. If the s still water? (a) 12 km/h A can run 22.5 me race. How much di (a) 200 meter meter The function $f(x) =$ (a) $x = 1$ 1	21 22 23

	(a) -6, -12,-18	8 (b) -6, 4, 9	9 (c) -6, -4, -	9 (d) - 6, 12, 18	
26	For the system	of equations: x+2y	v+3z=1, 2x+y+3z=2 &	& 5x+5y+9z=4	1
		s only one solution	(b) there exists	infinitely many	
	solution (c) there is	ı s no solution	(d) none of thes	se.	
27	If $x = 2at$ and	$y=t^2$ then find $\frac{d^2y}{dx^2}$			1
	(a) $\frac{1}{2a^2}$	(b) 2 <i>a</i> ²	(c) $\frac{1}{2t^2}$	(d) $\frac{t}{2a^2}$	
28	Find the point	of local maxima for	$f(x) = (x - 1)(x - 2)^{2}$	2?	1
	(a) 2	(b) $\frac{4}{3}$	(c) 0	(d) -2	
29			$C(x) = \frac{1}{3}x^3 - 5x^2 +$ for what value of x v		1
	(a) 2 (b) 4	(c) 8	(d) 6	
30	The value of x, if $\begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 0 \end{bmatrix} = 0$				
	(a) -2	(b) 2	(c) -1	(d) 0	
31	Find the value $a_{ij} = \begin{cases} 1 & if \ i \neq j \\ 0 & if \ i = j \end{cases}$		x 2 matrix whose ele	ements are given by	1
			(c) 0	(d) - I	
32	(a) I(b) 2 I(c) 0(d) - IGiven that matrices A and B are of order 3 x n and m x 5 respectively, then the order of matrix C = 5 A + 3 B is:				1
	(a) 3 x 5 and m	= n (b) 3 x 5	(c) 3 x 3	(d) 5 x 5	
33	Suppose that X P(X=0).	has a Poisson distr	ribution. If P(X=2)=	² / ₃ P(X=1),evaluate	1
	(a) $e^{\frac{4}{3}}$	(b) $e^{\frac{-5}{3}}$	(c) $e^{\frac{-4}{3}}$	(d) none of these	
34	If $\sum p_0 = 113$ ar	nd $\sum p_1 = 142$, then	n p ₀₁ is		1
	(a) 122.41	(b) 125.66	(c) 129.23	(d) 132.57	1

35	A random variable 'X' has the following probability distribution: 1						
	X	0	1	2	3		
	P(X)	k	К	2k	k		
	Find the value o	P(x=1) + P(x=1)	2J + P(x=5)				
	(a)1	(b) 0.2	(0	c) 0.5	(d)0.8		
36				•	robability that out at none is defective	1	
	(a) $\left(\frac{1}{2}\right)^5$	(b) $\left(\frac{9}{10}\right)^1$	(c) $\left(\frac{9}{10}\right)^5$	$(d)\left(\frac{1}{10}\right)^5$		
37	The formula $\frac{\sum p_2}{\sum p_0}$	$\frac{1}{1}\frac{q_0}{q_0} \ge 100$ is used	d to calculate?			1	
		e's index value		aasche's co	nsumer price index		
	(c)Passche's index	s cost of living i	ndex (d)	Laspeyre's o	consumer price		
38	Price index by N	/arshall Edge w	orth method ta	akes		1	-
	(a) $q0$ as weight $\sqrt{q0q1}$ as weight		s weights	(c) q0+q12	as weights (d)		
39	Index number r	epresents:				1	
	(a) Specialis	ed average in p	ercentage	(b) Symme	try representation		
	(c) Coefficie	ent of variation		(d) Deviati	on		
40	In a binomial di probability of tv				ce is 1 & 8. Find the times.	1	
	(a) $\frac{128}{625}$ these	(b) $\frac{64}{625}$		(c) $\frac{64}{125}$	(d)none of		
	I		SECTIO	DN – C			J
	is section, attem stions 46-50 are		-	uestions. Ea	ach question is of :	l-mark weig	ghtage
41		e price index or e was Rs.12 per)12 compared to 20 cost in 2012.	10 is 130. If	1
	(a) 15.60 per	kg. (b) (a) 15	per kg. (c) (a)) 15.75 per	kg. (d) None of the	ese	
42	If matrix A = [$\begin{bmatrix} 1 & 1 \\ 0 & 3 \end{bmatrix}$, then A^{-1}	is equal to				1
	1						1

	(a) $\begin{bmatrix} 1 & -\frac{1}{3} \\ 0 & \frac{1}{3} \end{bmatrix}$	(b) [1 0	$ \begin{bmatrix} \frac{1}{3} \\ -\frac{1}{3} \end{bmatrix} $ (c) $ \begin{bmatrix} 0 \\ 1 \end{bmatrix} $	$\begin{pmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ \end{pmatrix} \qquad (0)$	$1)\begin{bmatrix} 0 & -\frac{1}{3} \\ 1 & 1 \end{bmatrix}$	
43	If the demand fur	nction is $p(x)=20$	$-\frac{x}{2}$, then the marg	ginal revenue whe	en x=10 is	1
	(a) ₹ 5	(b) ₹ 150	(c) ₹	15	(d) ₹ 10	
44	A car hire firm ha cars on each day probabilities of da (a)0.2231 (b) 0	is distributed as a ays on which som .1913 (c) 0.808	Poisson distribut le demand is refus 7 (d)none of	tion with mean 1. sed. (Use e ^{-1.5} =0.2 these	5. Calculate the	1
45	For the two secto	r economy input-	output table is giv	ven below:		
	Output→ Input↓	Industry I	Industry II	Final demand	Total out put	
	Industry I	16	20	4	40	
	Industry II	8	40	32	80	
	Find the technolo	gy matrix.				
	$(a) \begin{bmatrix} 0.4 & 0.5 \\ 0.25 & 0.2 \end{bmatrix}$	(b) $\begin{bmatrix} 0.4 & 0.2 \\ 0.2 & 0.5 \end{bmatrix}$	$\begin{bmatrix} 2\\5 \end{bmatrix}$ (c) $\begin{bmatrix} 0.4\\0.2 \end{bmatrix}$	$\begin{bmatrix} 0.25\\ 0.5 \end{bmatrix}$ (d)	$\begin{bmatrix} 0.2 & 0.4 \\ 0.5 & 0.5 \end{bmatrix}$	
	Partnership-I A, B and C engage follows: January 1, A put F 10000 and Withd ₹ 20000 on Januar 1 and added ₹ 200 15000 on Januar April 1 and added At the end of the y Based on the abov	ed in a business ar Rs.15000, on May rew ₹ 8000 on Oc ry 1, withdrew ₹ 00 on November y 1, Withdrew ₹. 8 l Rs. 20000 on Sej year B's Share of j	nd made investme 1, A added ₹ ctober; B put 5000 on July 1; C put ₹ 8000 on ptember 1. profit is ₹ 9630.	ent and withdraw		

46	A's effective capital (in Rs.) for 1 month is					
	(a) ₹ 57000	(b) ₹228000	(c)₹236000	(d) ₹ 328000		
47	Sum of B's and C	's effective capitals	(in Rs.) for 1 month	is	1	
	(a) ₹ 107000	(b) ₹429000	(c)₹215000	(d) ₹214000		
48	C's share of profit is					
	(a) ₹ 6450	(b) ₹ 7445	(c)₹9675	(d) ₹10245		
49	How much A's share of profit is more than B's share?					
	(a) ₹ 990	(b) ₹ 660	(c) ₹ 720	(d) ₹ 1090		
50	Sum of A's and C's shares of profit is					
	(a) ₹ 18325	(b) ₹ 20295	(c)₹21495	(d) ₹ 19375		

Marking Scheme-2 Class XII, TERM - I, 2021-22 Subject – Applied Maths (241)

Q.	Correct option	Hints/solution	Marks
No			
•			
1	(b) $[21 + 5] \pmod{4} = 21 \pmod{4} + 5 \pmod{4}$		1
		= 1 + 1 = 2	
2	(a)	- 3 < x < 3	1
-		Find 500(mod24), $500 \equiv 20 \pmod{24}$	
3	(a)	$(8+20) \equiv 4 \pmod{24}$	1
		Correct Answer 4:00 A.M.	
4	(c)	Let the leakage in the tank take x minutes to empty the full tank so, part of the tank emptied by the leakage in 1 minute $=\frac{1}{x}$ Therefore $\frac{1}{40} - \frac{1}{x} = \frac{1}{60}$ $\frac{1}{x} = \frac{1}{40} - \frac{1}{60} = \frac{1}{120}$ $\Rightarrow X=120 = 2$ hours	1
5	(b)	A+ A^T =I, Equating a_{11} =1 2 cos α = 1	1

		π	
		$\Rightarrow \alpha = \frac{\pi}{3}$	
6	(b)	Correct value of b = 3	1
7	(c)	Given $ A = -2$, $ adj.A = A ^2 = 4$ $ adj(adj.A) = 4^2 = 16$	1
8	(a)	If $\Delta = 0$ then system has no solution.	1
9	(a)	f' (x) = 3(kx ² - 6x + 3) Given: f(x) is increasing in every interval. ⇒ f'(x) > 0 ⇒ 3(kx ² - 6x + 3) > 0 ⇒ (kx ² - 6x = 3) > 0 ⇒ K > 0 and (-6) ² - 4(k)(3) < 0 [: ax ² + bx + c > 0 and D is c < 0] ⇒ k > 0 and (-6) ² - 4(k) (3) < 0 ⇒ k > 0 and 36 - 12k < 0 ⇒ k > 0 and 12k > 36 ⇒ k > 0 and k > 3 Correct Answer ⇒ k > 3	1
10	(b)	$f'(x) = 2x - 2 < 0, x \in (-\infty, 1)$	1
11	(c)	x + y=0	1
12	(c)	∴ A : B : C = 45000 : 70000 : 90000 A : B : C = 9 : 14 : 18, Total = 9+14+18 =41 ∴ B's share = $\frac{14}{41}$ x 164000 = ₹56000	1
13	(b)	Correct answer = $\frac{7}{64}$ np=4, npq=2,p(2)= ${}_{2}^{n}Cp^{2}q^{n-2}$	1
14	(a)	Req. prob.=1-P(no 5 on both dice) Correct answer = $\frac{11}{26}$	1
15	(b)	Correct answer = $\frac{11}{36}$ e^{-1} , Hint: $\frac{e^{-\lambda}\lambda}{1} = \frac{2}{1}\frac{e^{-\lambda}}{2}$, $P(0) = e^{-\lambda}$	1
16	(a)	Binomial distribution	1
17	(a)	$\frac{5}{12}$	1
18	(d)	Let the cost of rice be ₹p0 and p1 per kg in 2015 and 2018 respectively $\therefore p_0 = ₹24$ and p01 = 150 $\therefore p_{01} = \frac{p_1}{p_0} \ge 100$, $150 = \frac{p_1}{24} \ge 100$ $p_1 = 36$ Hence, the price of rice in 2018 is ₹36 per kg.	1
		36	

19	(b)	x ∈ (- 1,∞)	1
20 Q. No	(a) Correct option	C.P. of 1 litre of water C.P. of 1 litre of milk Mean Price $\frac{1}{7}$ Let C.P. of 1 litre milk be $\gtrless 1$, gain = $16\frac{2}{3}\%$ The ratio of water and milk = $1/7 : 6/7 = 1:6$ Hints/solution	1 Marks
•			
21	(d)	Let speed of boat in still water = x km/h Speed of stream = 3 km/h Speed in downstream =(x + 3) km/h Speed in back (upstream) = (x - 3) km/h Distance covered by boat = (x + 3).1 = (x - 3). $\frac{3}{2}$ Speed of boat x = 15 km/h	1
22	(d)	When B run 25 m, A runs = 22.5 m When B runs 1 m then A runs = $\frac{22.5}{25}$ And when B runs 1000 m then A runs $\frac{22.5}{25}$ x 1000 = 900 m Hence B beats A by 100 mtr.	1
23	(b)	$f''(x) = \frac{1}{2} - \frac{1}{x^2} = 0, x = -2, 2$ f''(x) >0 then f(x) is minimum and f''(2) > 0 correct answer x = 2	1
24	(C)	$A^T = A$	1
25	(c)	K = -6 , a = -4 and b = -9	1
26	(a)	As $ A \neq 0$, System has only one solution.	1
27	(a)	$\frac{dx}{dt} = 2a \& \frac{dy}{dt} = 2t , \frac{dy}{dx} = \frac{t}{a}$ Correct answer $\frac{d^2y}{dx^2} = \frac{1}{a}\frac{dt}{dx} = \frac{1}{2a^2}$	1
28	(b)	Correct answer $=\frac{4}{3}$	1
29	(d)	Correct answer = 6 P(x)=R(x)-C(x),where R(x)=px then find x when P(x) maximum	1
30	(b)	x – 2 = 0, x = 2	1
31	(a)	$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, A^2 = A A = I$	1
		37	

1 1 1 33 (c) $e^{\frac{-1}{3}} \frac{e^{-\lambda} \lambda}{2} = \frac{2}{3} \frac{e^{-\lambda}}{1} \lambda}{1}, P(0) = e^{-\lambda}$ 1 34 (b) $\therefore p_{01} = \frac{p_1}{p_0} \times 100 = \frac{142}{113} \times 100$ 1 34 (b) $\therefore p_{01} = \frac{p_1}{p_0} \times 100 = \frac{142}{113} \times 100$ 1 35 (d) $P_{01} = 125.66$ 1 36 (c) Correct answer $= (\frac{9}{10})^5$ 1 36 (c) Correct answer $= (\frac{9}{10})^5$ 1 37 (a) Laspeyre's index value 1 38 (c) Marshall- Edgeworth formula uses the arithmetic mean of the base and current year quantities. Therefor $\frac{90}{2}, \frac{91}{4}$ as weights 1 39 (a) $\frac{128}{625}$ np+npq=1.8,n=5,p=0.2,q=0.8 1 41 (a) $\frac{128}{125}$ np+npq=1.8,n=5,p=0.2,q=0.8 1 42 (a) Correct answer $A^{-1} = \begin{bmatrix} 1 & -\frac{1}{2} \\ 0, \frac{1}{3} \end{bmatrix}$ 1 43 (a) Marginal revenue $M(x) = p(x).x = (20 \cdot \frac{x}{2})x$ 1 43 (a) Marginal revenue $M(x) = p(x).x = (20 \cdot \frac{x}{2})x$ 1 44 (b) 0.1913 $\lambda = mean=1.5$ P(more than two cars demanded)=1-P(0)-P(1)-P(2) 1	32		3 x 5 and m = n	1
34 (b) $\therefore p_{01} = \frac{p_1}{p_0} \times 100 = \frac{142}{113} \times 100$ 1 35 (d) $\therefore p_{01} = 125.66$ 1 35 (d) $P(x=1) + P(x=2) + P(x=3) = k+2k+k = 4k$ 1 36 (c) Correct answer $= \left(\frac{9}{10}\right)^5$ 1 37 (a) Laspeyre's index value 1 38 (c) Current year quantities. 1 Therefore $\frac{0_{14}}{2}$ or a weights 1 1 39 (a) Specialised average in percentage 1 40 (a) $\frac{128}{625}$ np+npq=1.8,n=5,p=0.2,q=0.8 1 41 (a) Let the cost of rice be ₹ p per kg in 2012 Given 130 = $\frac{p}{12} \times 100$, $p = ₹15.60$ per kg. 1 42 (a) Correct answer $A^{-1} = \left[1 - \frac{1}{-\frac{3}{2}}\right]$ 1 43 (a) Marginal revenue $M(x) = p(x).x = (20 - \frac{x}{2})x$ M'(x) at $x = 10 = 20 - x = 20 - 10Correct answer = 10 1 44 (b) 0.1913 \lambda=mean=1.5 P(more than two cars demanded)=1-P(0)-P(1)-P(2) 1 45 (c) Technology matrix = \left[0.4 - 0.25 \\ 0.2 & 0.5\right\right] 1 45 (c) A's effective capital (in Rs.) for 1 month is = ₹ 1 $		(a)		T
$p_{01} = 125.66$ 35(d) $\stackrel{(x+1)+(x+2)+(x+1)}{P(x=1)+P(x=3)=k+2k+k=4k}$ 36(c)Correct answer $= \left(\frac{9}{10}\right)^5$ 137(a)Laspeyre's index value138(c)Marshall-Edgeworth formula uses the arithmetic mean of the base and current year quantities. Therefore $\frac{90+91}{2}$ as weights139(a)Specialised average in percentage140(a) $\frac{128}{625}$ np+npq=1.8,n=5,p=0.2,q=0.8141(a)Let the cost of rice be \preccurlyeq p per kg in 2012141(a)Correct answer $A^{-1} = \left[\begin{array}{c} 1 & -\frac{1}{3} \\ 0 & \frac{1}{3} \end{array} \right]$ 143(a)Marginal revenue M(x) = p(x).x = $(20 - \frac{x}{2})x$ 144(b)0.1913 λ =mean=1.5 P(more than two cars demanded)=1-P(0)-P(1)-P(2)145(c)Technology matrix = $\begin{bmatrix} 0.4 & 0.25 \\ 0.2 & 0.5 \end{bmatrix}$ 146(b)A's effective capital (in Rs.) for 1 month is = $\frac{3}{107000}$ 148(c)C's share of profit is = $\frac{3}{9}$ 9675149(d)A's share of profit is $n = \frac{4}{9}$ 9751	33	(c)	$e^{\frac{-4}{3}} \frac{e^{-\lambda}\lambda^2}{2} = \frac{2}{3}\frac{e^{-\lambda}\lambda}{1}, P(0) = e^{-\lambda}$	1
35(d) $P(x=1) + P(x=2) + P(x=3) = k+2k+k = 4k$ $= 4x \frac{1}{5} = 0.8$ 136(c)Correct answer $= \left(\frac{9}{10}\right)^5$ 137(a)Laspeyre's index value138(c)Marshall-Edgeworth formula uses the arithmetic mean of the base and current year quantities. Therefor $\frac{40+41}{2}$ as weights139(a)Specialised average in percentage140(a) $\frac{128}{625}$ np+npq=1.8,n=5,p=0.2,q=0.8141(a)Let the cost of rice be \neq p per kg in 2012 Given 130 $= \frac{1}{22} \times 100$, $p = \neq 15.60$ per kg.142(a)Correct answer $A^{-1} = \left[1 -\frac{1}{3} \\ 0 \frac{1}{3}\right]$ 143(a)Marginal revenue $M(x) = p(x).x = (20 - \frac{x}{2})x$ $M'(x)$ at $x = 10 = 20 - x = 20 - 10$ $Correct answer = 10$ 144(b)0.1913 λ =mean=1.5 P(more than two cars demanded)=1-P(0)- P(1)-P(2)145(c)Technology matrix = $\left[\frac{0.4}{0.2} 0.5\right]$ 107000 147(a)Sum of B's and C's effective capitals (in Rs.) for 1 month is = \neq 1090148(c)C's share of profit is more than B's share = \ddagger 1090149(d)A's share of profit is more than B's share = \ddagger 10901	34	(b)		1
111 $= 4x \frac{1}{5} = 0.8$ 36(c)Correct answer $= \left(\frac{9}{10}\right)^5$ 137(a)Laspeyre's index value138(c)Marshall- Edgeworth formula uses the arithmetic mean of the base and current year quantities. Therefore $\frac{09}{2}$ as weights139(a)Specialised average in percentage140(a) $\frac{128}{625}$ np+npq=1.8,n=5,p=0.2,q=0.8141(a)Let the cost of rice be ₹ p per kg in 2012 Given 130 = $\frac{p}{12} x 100$, $p = ₹15.60$ per kg.142(a)Correct answer $A^{-1} = \begin{bmatrix} 1 & -\frac{1}{3} \\ 0 & \frac{1}{3} \end{bmatrix}$ 143(a)Marginal revenue M(x) = p(x).x = (20 - $\frac{x}{2})x$ M'(x) at x = 10 = 20 - x = 20 - 10 Correct answer = 10144(b)0.1913 λ =mean=1.5 P(more than two cars demanded)=1-P(0)- P(1)-P(2)145(c)Technology matrix = $\begin{bmatrix} 0.4 & 0.25 \\ 0.2 & 0.5 \end{bmatrix}$ 146(b)A's effective capital (in Rs.) for 1 month is = ₹ 228000147(a)Sum of B's and C's effective capitals (in Rs.) for 1 month is = ₹ 1090148(c)C's share of profit is more than B's share = ₹ 10901	35	(d)		1
37(a)Laspeyre's index value138(c)Marshall-Edgeworth formula uses the arithmetic mean of the base and current year quantities. Therefore $\frac{90.491}{2}$ as weights139(a)Specialised average in percentage140(a) $\frac{128}{625}$ np+npq=1.8,n=5,p=0.2,q=0.8141(a)Let the cost of rice be $₹$ p per kg in 2012 Given 130 = $\frac{p}{12} x 100$, p = $₹15.60$ per kg.142(a)Correct answer $A^{-1} = \begin{bmatrix} 1 & -\frac{1}{3} \\ 0 & \frac{1}{3} \end{bmatrix}$ 143(a)Marginal revenue M(x) = p(x).x = $(20 - \frac{x}{2})x$ M'(x) at x = $10 = 20 - x = 20 - 10$ Correct answer = 10 144(b) 0.1913λ =mean=1.5 P(more than two cars demanded)=1-P(0)- P(1)-P(2)145(c)Technology matrix = $\begin{bmatrix} 0.4 & 0.25 \\ 0.2 & 0.5 \end{bmatrix}$ 146(b)A's effective capital (in Rs.) for 1 month is = $₹ 228000$ 147(a)Sum of B's and C's effective capitals (in Rs.) for 1 month is = $₹$ 148(c)C's share of profit is more than B's share = $₹1090$ 149(d)A's share of profit is more than B's share = $₹1090$ 1			$=4x\frac{1}{5}=0.8$	
11138(c)Marshall- Edgeworth formula uses the arithmetic mean of the base current year quantities. Therefore $\frac{90_{4}}{2}$ as weights139(a) $\frac{128}{625}$ np+npq=1.8,n=5,p=0.2,q=0.8140(a) $\frac{128}{625}$ np+npq=1.8,n=5,p=0.2,q=0.8141(a)Let the cost of rice be ₹ p per kg in 2012 Given 130 = $\frac{p}{12}$ x 100 , p = ₹15.60 per kg.142(a)Correct answer $A^{-1} = \begin{bmatrix} 1 & -\frac{1}{3} \\ 0 & \frac{1}{3} \end{bmatrix}$ 143(a)Marginal revenue $M(x) = p(x).x = (20 - \frac{x}{2})x$ M'(x) at $x = 10 = 20 - x = 20 - 10$ Correct answer = 10144(b)0.1913 λ =mean=1.5 P(more than two cars demanded)=1-P(0)- P(1)-P(2)145(c)Technology matrix = $\begin{bmatrix} 0.4 & 0.25 \\ 0.2 & 0.5 \end{bmatrix}$ 146(b)A's effective capital (in Rs.) for 1 month is = ₹ 228000147(a)Sum of B's and C's effective capitals (in Rs.) for 1 month is = ₹ 1090148(c)C's share of profit is more than B's share = ₹ 10901	36	(c)	Correct answer $= \left(\frac{9}{10}\right)^5$	1
38(c)current year quantities. Therefore $\frac{90 + 41}{2}$ as weights139(a)Specialised average in percentage140(a) $\frac{128}{625}$ np+npq=1.8,n=5,p=0.2,q=0.8141(a)Let the cost of rice be ₹ p per kg in 2012 Given 130 = $\frac{p}{12}$ x 100, p = ₹15.60 per kg.142(a)Correct answer $A^{-1} = \begin{bmatrix} 1 & -\frac{1}{3} \\ 0 & \frac{1}{3} \end{bmatrix}$ 143(a)Marginal revenue M(x) = p(x).x = (20 - $\frac{x}{2}$)x M'(x) at x = 10 = 20 - x = 20 - 10 Correct answer = 10144(b)0.1913 λ =mean=1.5 P(more than two cars demanded)=1-P(0)- P(1)-P(2)145(c)Technology matrix = $\begin{bmatrix} 0.4 & 0.25\\0.2 & 0.5 \end{bmatrix}$ 146(b)A's effective capital (in Rs.) for 1 month is = ₹ 228000147(a)Sum of B's and C's effective capitals (in Rs.) for 1 month is = ₹ 1090148(c)C's share of profit is more than B's share = ₹ 10901	37	(a)	Laspeyre's index value	1
39(a)Specialised average in percentage140(a) $\frac{128}{625}$ np+npq=1.8,n=5,p=0.2,q=0.8141(a)Let the cost of rice be ₹ p per kg in 2012 Given 130 = $\frac{p}{12}$ x 100, p = ₹15.60 per kg.142(a)Correct answer $A^{-1} = \begin{bmatrix} 1 & -\frac{1}{3} \\ 0 & \frac{1}{3} \end{bmatrix}$ 143(a)Marginal revenue M(x) = p(x).x = (20 - $\frac{x}{2}$)x M'(x) at x = 10 = 20 - x = 20 - 10 Correct answer = 10144(b)0.1913 λ =mean=1.5 P(more than two cars demanded)=1-P(0)- P(1)-P(2)145(c)Technology matrix = $\begin{bmatrix} 0.4 & 0.25 \\ 0.2 & 0.5 \end{bmatrix}$ 146(b)A's effective capital (in Rs.) for 1 month is = ₹ 228000147(a)Sum of B's and C's effective capitals (in Rs.) for 1 month is = ₹148(c)C's share of profit is = ₹9675149(d)A's share of profit is more than B's share = ₹10901	38	(c)	current year quantities.	
41(a)Let the cost of rice be ₹ p per kg in 2012 Given 130 = $\frac{p}{12} \times 100$, p = ₹15.60 per kg.142(a)Correct answer $A^{-1} = \begin{bmatrix} 1 & -\frac{1}{3} \\ 0 & \frac{1}{3} \end{bmatrix}$ 143(a)Marginal revenue M(x) = p(x).x = $(20 - \frac{x}{2})x$ M'(x) at x = 10 = 20 - x = 20 - 10 Correct answer = 10144(b) 0.1913λ =mean=1.5 P(more than two cars demanded)=1-P(0)- P(1)-P(2)145(c)Technology matrix = $\begin{bmatrix} 0.4 & 0.25 \\ 0.2 & 0.5 \end{bmatrix}$ 146(b)A's effective capital (in Rs.) for 1 month is = ₹ 228000147(a)Sum of B's and C's effective capitals (in Rs.) for 1 month is = ₹ 10700148(c)C's share of profit is = ₹9675149(d)A's share of profit is more than B's share = ₹10901	39	(a)		1
41(d)Given $130 = \frac{p}{12} x 100$, $p = ₹15.60$ per kg.142(a)Correct answer $A^{-1} = \begin{bmatrix} 1 & -\frac{1}{3} \\ 0 & \frac{1}{3} \end{bmatrix}$ 143(a)Marginal revenue $M(x) = p(x).x = (20 - \frac{x}{2})x$ $M'(x)$ at $x = 10 = 20 - x = 20 - 10$ Correct answer $= 10$ 144(b) $0.1913 \lambda = mean = 1.5 P(more than two cars demanded) = 1 - P(0) - P(1) - P(2)$ 145(c)Technology matrix = $\begin{bmatrix} 0.4 & 0.25 \\ 0.2 & 0.5 \end{bmatrix}$ 146(b)A's effective capital (in Rs.) for 1 month is $= ₹ 228000$ 147(a)Sum of B's and C's effective capitals (in Rs.) for 1 month is $= ₹ 107000$ 148(c)C's share of profit is $= ₹9675$ 149(d)A's share of profit is more than B's share $= ₹1090$ 1	40	(a)	$\frac{128}{625}$ np+npq=1.8,n=5,p=0.2,q=0.8	1
43(a)Marginal revenue $M(x) = p(x).x = (20 - \frac{x}{2})x$ $M'(x) at x = 10 = 20 - x = 20 - 10Correct answer = 10144(b)0.1913 \lambda = mean = 1.5 \ P(more than two cars demanded) = 1 - P(0) - P(1) - P(2)145(c)Technology matrix = \begin{bmatrix} 0.4 & 0.25 \\ 0.2 & 0.5 \end{bmatrix}146(b)A's effective capital (in Rs.) for 1 month is = ₹ 228000147(a)Sum of B's and C's effective capitals (in Rs.) for 1 month is = ₹ 10700148(c)C's share of profit is = ₹9675149(d)A's share of profit is more than B's share = ₹10901$	41	(a)		1
43 (a) $M'(x) \text{ at } x = 10 = 20 - x = 20 - 10$ Correct answer = 10 1 44 (b) $0.1913 \ \lambda = \text{mean} = 1.5 \ P(\text{more than two cars demanded}) = 1 - P(0) - P(1) - P(2)$ 1 45 (c) Technology matrix = $\begin{bmatrix} 0.4 & 0.25 \\ 0.2 & 0.5 \end{bmatrix}$ 1 46 (b) A's effective capital (in Rs.) for 1 month is = ₹ 228000 1 47 (a) Sum of B's and C's effective capitals (in Rs.) for 1 month is = ₹ 107000 1 48 (c) C's share of profit is = ₹ 9675 1 49 (d) A's share of profit is more than B's share = ₹ 1090 1	42	(a)	Correct answer $A^{-1} = \begin{bmatrix} 1 & -\frac{1}{3} \\ 0 & \frac{1}{3} \end{bmatrix}$	1
44 (b) $P(1)-P(2)$ 1 45 (c) Technology matrix = $\begin{bmatrix} 0.4 & 0.25 \\ 0.2 & 0.5 \end{bmatrix}$ 1 46 (b) A's effective capital (in Rs.) for 1 month is = ₹ 228000 1 47 (a) Sum of B's and C's effective capitals (in Rs.) for 1 month is =₹ 107000 1 48 (c) C's share of profit is =₹ 9675 1 49 (d) A's share of profit is more than B's share = ₹ 1090 1	43	(a)	M'(x) at x = $10 = 20 - x = 20 - 10^{-2}$	1
45(c)recinitionogy matrix = $\begin{bmatrix} 0.2 & 0.5 \end{bmatrix}$ 146(b)A's effective capital (in Rs.) for 1 month is = ₹ 228000147(a)Sum of B's and C's effective capitals (in Rs.) for 1 month is = ₹ 107000148(c)C's share of profit is = ₹ 9675149(d)A's share of profit is more than B's share = ₹ 10901	44	(b)		1
47(a)Sum of B's and C's effective capitals (in Rs.) for 1 month is =₹ 107000148(c)C's share of profit is =₹9675149(d)A's share of profit is more than B's share = ₹10901	45	(c)	Technology matrix = $\begin{bmatrix} 0.4 & 0.25\\ 0.2 & 0.5 \end{bmatrix}$	1
47 (a) 107000 1 48 (c) C's share of profit is = ₹ 9675 1 49 (d) A's share of profit is more than B's share = ₹ 1090 1	46	(b)	A's effective capital (in Rs.) for 1 month is = $₹228000$	1
49(d)A's share of profit is more than B's share = $₹1090$ 1	47	(a)		1
	48	(c)	C's share of profit is =₹9675	1
50(c)Sum of A's and C's shares of profit is = $₹21495$ 1	49	(d)	A's share of profit is more than B's share = ₹ 1090	1
	50	(c)	Sum of A's and C's shares of profit is = ₹ 21495	1

SAMPLE QUESTION PAPER-3 CLASS –XII SESSION -2021-2022 APPLIED MATHEMATICS (241) TERM -1

TIME ALLOWED : 90MIN

MAX MARKS :40

GENRAL INSTRUCTION :

1. This question paper contain three sections- A,B,C. Each part is compulsory

2.Section-A has 20 MCQs , attempt any 16 out of 20.

3. Section-B has 20 MCQs , attempt any 16 out of 20.

4. Section-C has 10 MCQs, attempt any 8 out of 10.

5. There is no internal choice in any section.

6.All questions carry equal marks.

SECTION – A

In this section, attempt any 16 questions out of Questions 1 – 20. Each Question is of 1 mark weightage.

1.	What is the value of $57 \cong 10^{-1}$	42 mod 11	1
	a) 1	b) 2	
	c) 3	d) 4	
2.	Milk and water in two ves	sels A and B are in the ratio 4:3 and 2:3 respectively. In what	1
	ratio the liquids in both th	e vessels should be mixed to obtain a new mixture in vessel	
	C containing half milk and	half water?	
	a) 7:5	b) 6:5	
	C) 8:5	d) 4:5	
3	A man can row at 5 km/hr i	n still water. If the river is running at 1 km/hr it takes	1
	him 75 minutes to row to a j	place and back. How far is the place ?	
	a)2.5 km	b)3km	
	c)4km	d)5km	
4.	What is the remainder wh	en 2 ²⁰⁰ is divided by 18?	1
	a) 4	b) 8	
	C) 91	d) 111	
5	If		1

	$\begin{bmatrix} r+3 & r+4 & 2\nu-7 \end{bmatrix} \begin{bmatrix} 0 & 6 & 3\nu-2 \end{bmatrix}$	
	$\begin{bmatrix} x+3 & z+4 & 2y-7 \\ 4x+6 & a-1 & 0 \\ b-3 & 3b & z+2c \end{bmatrix} = \begin{bmatrix} 0 & 6 & 3y-2 \\ 2x & -3 & 2c+2 \\ 2b+4 & -21 & 0 \end{bmatrix}$	
	b-3 3b $z+2c$ 2b+4 -21 0	
	Then find the values of a, b, c, x, y, and z respectively.	
	a)-2,-7,-1,-3,-5,2 b)2,7,1,3,5,-2	
	c)1,3,4,2,8,9 d)-1,3,-2,-7,4,5	
6	Total number of possible matrices of order 3 × 3 with each entry o and 1	1
	(a)9 (b)27	
	(c)81 (d)512	
7	If A and B are square matrices of order 3 such that $ A = -1$ and $ B = 3$, then find the	
	value of 3 <i>AB</i> .	
	(a) -9 (b) -27	
	(C) -81 (d) -343	
	If the equations $2x + 3y + z = 0$, $3x + y - 2z = 0$ and $ax + 2y - bz = 0$ has non-trivial	1
	solution, then	
	(a)a-b=2 (b)a+b+1=0	
	(c)a+b=3 (d)a-b-8=0	
9	Find the minor of 6 and cofactor of 4 respectively in the determinant $\Delta = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$	1
	(a)6,6 (b)6,-6 (d)-6,6	
10	If $f(x) = 1/x$, then the interval in which function is decreasing (a) (1.2)	1
	(a) $(1,2)$ (b) $(0,\infty)$ (c) $(-\infty,\infty)$ (d)None of these	
11	The point on the curves $y = (x - 3)^2$ where the tangent is parallel to the chord joining	1
	(3, 0) and (4, 1) is	
	(a) (-7/2,1/4) (b) (5/2,1/4)	
	(c) (-5/2,1/4) (d) (7/2,1/4)	
12	Find the maximum profit that a company can make, if the profit function is given by	1
	$P(x) = 41 + 24x - 18x^2.$	
	(a)25 (b)43 (d)49	
	(c)62 (d)49	
13	A die is thrown twice and sum of the numbers appearing is observed to be 6. What is the conditional probability that the number 4 has appeared at least once?	1
	a) 2/5 b) 3/5	
	c) 5/36 d) 1/18	
-	40	

14 A random variable X has the following probability distribution: 1 X 0 1 2 3 4 5 6 7	1
P(X) 0 k 2k 2k 3k k^2 $2k^2$ $7k^2+k$	
Find k. $2/5$	
a) 1/10 b) 2/5 C) 3/10 d) 2/7	
	1
15The mean of a distribution is 60 with standard deviation 5. Assuming that the distribution is normal, what percentage of items be between 65 and 751	1
a) 15.74 b) 20.74 C) 18.74 d) 19.74	
	1
16Ten eggs are drawn successively with replacement from a lot containing 10% defective1eggs. Find the probability that there is at least one defective egg1	1
a) $1 - \frac{9^{11}}{10^{10}}$ C) $1 - \frac{9^{10}}{10^{10}}$ b) $1 - \frac{9^{10}}{10^{11}}$ d) $1 - \frac{9^{12}}{10^{10}}$	
a) $1 - \frac{9^{11}}{10^{10}}$ C) $1 - \frac{9^{10}}{10^{10}}$ b) $1 - \frac{9^{10}}{10^{11}}$ d) $1 - \frac{9^{12}}{10^{10}}$	
17. If the properties of defective in a bully is 40/ Find the probability of 2 defective in a 1	1
17If the proportion of defective in a bulk is 4% Find the probability of 2 defective in a sample of 10. It is known that $e^{4} = .6703$.1	1
a) 0.536 b) 0.636 C) 0.736 d) 0.836	
18To calculate paasche's index number the weights are taken as1	1
a) base year prices b) current year prices	
c) base year quantities d) current year quantities	
19.Fisher's ideal index number is1	1
a) geometric mean of Laspeyres and Edgeworth Marshall index number	
b) arithmetic mean of Laspeyre's and Paasche's index number	
c) harmonic mean of Laspeyre's and Paasche's index numberd) geometric mean of Laspeyre's and Paasche's index number	
	1
$\sum p_1 q_{1} y_1 q_2$	
a) $\frac{\sum p_1 q_1}{\sum p_0 q_0} X100$ b) $\frac{\sum p_1 q_0}{\sum p_0 q_1} X100$ c) $\frac{\sum p_1 q_0}{\sum p_0 q_0} X100$ d) $\frac{\sum p_1 q_0}{\sum p_1 q_1} X100$	
c) $\frac{\sum p_1 q_0}{\sum p_0 q_0} X100$ d) $\frac{\sum p_1 q_0}{\sum p_1 q_1} X100$	
SECTION – B	
In this section, attempt any 16 questions out of Questions 21 – 40. Each Question is of 1 mark weightage.	
21.To find the Index number by weighted average of price relatives, we use the formula1	1

	(a) $\frac{\sum (\frac{p_1}{p_0})(p_0 q_0)}{\sum (p_0 q_0)} X 100$ (b) $\frac{\sum (p_1)(p_0 q_0)}{\sum (p_0 q_0)} X 100$	
	(c) $\frac{\Sigma(p_0)(p_0q_0)}{\Sigma(p_0q_0)}$ X 100 (d) $\frac{\Sigma(\frac{p_1}{p_0})(p_1q_1)}{\Sigma(p_1q_1)}$ X 100	
22.	Two athletes Hari and Mohan finish 100m race in 16 sec and 20 sec respectively. By how many meters does Hari defeat Mohan?	1
23	(a) 25 m(b) 30m(c) 20m(d) 22mIn which of the technology matrix, Hawkins- Simon conditions are satisfied	1
	(a) $\begin{pmatrix} 0.2 & 0.9 \\ 0.8 & 0.1 \end{pmatrix}$ (b) $\begin{pmatrix} 0.7 & 0.3 \\ 0.2 & 1.2 \end{pmatrix}$	
	(c) $\begin{pmatrix} 1.02 & 0.5 \\ 0.6 & 0.8 \end{pmatrix}$ (d) $\begin{pmatrix} 0.3 & 0.2 \\ 0.1 & 0.5 \end{pmatrix}$	
24	The function $y = x $ is	1
	(a) neither differentiable nor continuous at $x = 0$	
	(b) differentiable and continuous at $x = 0$	
	(c) continuous but not differentiable at $x = 0$	
	(d) differentiable but not continuous at $x = 0$	
25.	Given that x = a $\cos\theta$ and y = b $\cos\theta$, then value of $\frac{d^2y}{dx^2}$ is	1
	(a) $\frac{a}{b}$ (b) $\frac{b}{a}$ (c) 0(d) 1If A and B are square matrices of the same order, then (A+B)(A-B) is	
26	If A and B are square matrices of the same order, then (A+B)(A-B) is	1
	(a) A^2-B^2 (b) $A^2-BA-AB - B^2$ (c) $A^2-B^2+BA - AB$ (d) $A^2 - BA + B^2 + AB$	
27	A sales promotion company sells tickets for ₹100 each to win a prize of ₹5 lakhs. If a person buys one of the 10,000 tickets sold, then his expected gain in rupees is	1
	(a) -50 (b) 0 (c) 50 (d) 100	
28	During a pandemic, 20% of the patients who have the disease get complications. If 100 patients of a locality get infected by the disease, then the standard deviation of the number of patient getting complications is:	1
	(a) 4 (b) 9 (c) 6 (d) 3	
29	The variable cost of producing x units is $(x) = x^2 + 2x$. If the company incurs a fixed cost of ₹81,00 then the level of output where the average cost is minimum is	1
	(a) 90 units (b) 50 units (c) 100 units (d) 200 units	

	Suresh, Satish a	nd Sameer agr	ees to invest for	time periods	s in the ratio 2:3:4.	If their	
20	profit sharing r	atio is 6:7:8 the	en the ratio of th	eir investme	nts is	1	
30	(a) 4:5:6	(b) 9:7:6	(c) 8:7:	6	(d) 12:21:32	1	
31	The prices of gr	oup of commo	dities is given in	the following	g table:	1	
	Commodities	А	В	С	D		
		F 0	0.5	110	100		
	p0 [Price (₹) in 2018]	50	25	110	108		
	<i>p</i> 1 [Price (₹)	60	40	125	120		
	in 2019]						
	The price index	for 2019 takin	g 2018 as base v	/ /ear using sir	nple aggregative m	ethod is:	
	-			-			
	(a) 80.23%	(b) 119.45%	(c) 125.5%	(d) 12	28%		
32	The Time rever	sal test is satisf	fied by			1	
	(a) Laspeyres in	-					
	(b) Paasches in	•					
			es index numbe	rs			
	(d) Fishers idea	l index					
33	Most widely used weighted index is					1	
	(a) Laspeyre	es indev	(b) Paasche's	indev			
	(c)Fisher's ide				ndex		
24		<u> </u>				1	
34	The index numl	ber was first co	nstructed in			1	
	(a) 1750 (b)	(b) 1760	(c) 1764	(d) 1770			
35		pplier distribut	tor has found th	e daily demai	nd for fluorescent l	ight 1	
	bulbs		6 4 2 2	1. 1. 1.		.1	
	2				eviation of 86. Find	the	
	probability that	, the demand of	n a particular da	y exceeds 51	o DUIDS.		
	(a)0.1587	(b) 0.3413	(c) 0.7587	(d) ().8413		
36	Let $m \in Z + \operatorname{cons}$	sider the relation	on R _m defined as	$R_m b \text{ iff } a \equiv b$	b(mod m),then R _m i	is 1	
		-	ic (b) symmetrio				
	(c) reflexive, sy	mmetric but no	ot transitive (d)	an equivalen	ce relation		
37	If the present ti	me is 8:40 PM,	then the time af	ter 876 ¹ / ₂ hou	rs will be	1	
	(a) 8:40 AM	(b) 9:10 AM	(c) 6:10 PM	(d) 10:4	-0 PM		
38			ship. B contribu		e capital, while A	1	
				-	tio of their capitals	is	
			contraction contra		at of their capitals		

	1
(a) 1:2:3 (b) 3:2:1 (c) 3:1:1 (d) 2:1:1	
An insurance company has found that 50% of its claims are for damages resulting from	
accidents. The probability that a random sample of 10 claims will contain fewer than 2	1
⁵⁹ for accidents is	-
$(a) \frac{1}{a} (b) \frac{5}{a} (c) \frac{15}{a} (d) \frac{11}{a}$	
(a) $\frac{1}{1024}$ (b) $\frac{5}{512}$ (c) $\frac{15}{1024}$ (d) $\frac{11}{1024}$ 40The value of mortgage loans made by a certain bank is normally distributed with mean	
	1
of ₹36 lacs and a standard deviation of ₹12 lacs. The probability that a randomly	
selected mortgage loan is less than 54 lacs is	
(a) 88.23% (b) 93.32% (c) 97.42% (d) 98.04%	
(a) 88.23% (b) 93.32% (c) 97.42% (d) 98.04% SECTION – C	
SECTION C	
In this section, attempt any 8 out of Questions 41-50	
Each Question is of 1 mark weightage.	
Question 46-50 are based on Case study.	
41 For a poisson distribution model if arrival rate of passengers at an airport is recorded	1
as 30 per hour on a given day. Find the expected number of arrivals in the first ten	-
minutes of an hour.	
a) 5 b)4 c)3 d) none	
42 A man rows 15 km upstream and 25 km downstream in 5 hour each time .What is the	
speed of current?	1
	1
a) 2km/hourb)1km/hourc)3km/hourd)4km/hour43A container contains 40 litre milk . From this container 4 litre milk was taken out and	1
	1
replaced with water .This process was repeated further two more times. How much	
milk is there in the container now?	
a) 31.16 litre b) 29.16 litre c)35.16 litre d)26 litre	
44 The demand function of a toy is $x = 75-3p$ and its total cost function is TC = 100+3x. For	1
maximum profit the value of x is	
a) 33 b)31 c)29 d)24	1
45 Given that mean of a normal variable X is 12 and standard deviation is 4. then Z-score	1
of data point 20 is	
a) 5 b)4 c)2 d)3	
a) 5 b)4 c)2 d)3 CASE STUDY	
To promote the making of toilets for women, an organization tried to generate	
awareness through a) house calls b)emails c)announcements. The cost for each mode	
per attempt is given below:	
a)Rs 50 b) Rs 20 c)Rs 40	
The number of attempts made in the village X , Y ,Z are given below	
i) ii) iii)	
44	

		00 300 100	
		00 250 75	
		00 400 150	
	Also, the cha	nce of making of toilets corresponding to one attempt of given mode	S 1S
	a) 2%	b)4% c)20%	
	Based	d on the above information , answer the following questions:	
46	The cost incu	urred by the organization on village X is	1
	a) Rs 10	0000 b)Rs 15000 c) Rs 30000 d) Rs 20000	
47	The cost incu	urred by the organization on village Y is	1
	b) Rs 25	000 b)Rs 18000 c) Rs 23000 d) Rs 28000	
48		urred by the organization on village Z is	1
	a) Da 10	h = 20000 $h = 10000$ $h = 10000$	
49	c) Rs 19 The total nu	0000 b)Rs 39000 c) Rs 45000 d) Rs 50000 mber of toilets that can be expected after the promotion in village X is	s 1
50	a) 20	b) 30 c)40 d)50 mber of toilets that can be expected after the promotion in village Z is	s 1
50		mber of tonets that can be expected after the promotion in vinage 2 is	
	b) 26	b) 36 c)46 d)56	
		MARKING SCHEME -3	
		CLASS: XII	
		Session: 2021-22	
		TERM - I	
		Applied Mathematics (Code-241)	r
Q.	Correct	Hint/Solutions	
No	option		
1	A	4	1
2	A	Milk in Vessel A = 4/7 (Dearer Value)	1
		Milk in Vessel B = 2/5 (Cheaper Value)	
		Milk in Vessel C = 1/2 (Mean Value)	
		Dearer : Cheaper = 1/2 - 2/5 : 4/7 - 1/2 = 1/10 : 1/14	
3	В	Required ratio is 14 : 10 = 7 : 5	1
3	ע	Let the distance to the place be x km.	1
		Speed downstream =(5+1) km/hr =6 km/hr	
		Speed upstream =(5-1) km/hr =4 km/hr	
		Given, 6x+4x=6075 hrs	
			·I

4	A	4	1
Ŧ	A	4	1
5	А	For comparing value of a, b, c,x , y are -2,-7,-1,-3,-5,2	1
6	D	2 ⁹	1
7	С	3AB =32 AB =27× A × B (1)	1
		\Rightarrow We have, $ A =-1$ and $ B =3$	
		$\Rightarrow \text{ So, } 3AB =27 \times A \times B \qquad [From (1)]$	
		\Rightarrow 3AB =27×(-1)×(3)	
		∴ 3AB =-81	
8	А	$\Rightarrow 2(-b+4)-3(-3b+2a)+1(6-a)=0 \Rightarrow 2(-b+4)-3(-3b+2a)+1(6-a)=0$	1
		0	
		$\Rightarrow -2b+8+9b-6a+6-a=0 \Rightarrow -2b+8+9b-6a+6-a=0$	
		\Rightarrow 7 b- 7 a=- 14 \Rightarrow 7b-7a=-14 \Rightarrow a-b= 2	
9	D	Minor -6, cofactor 6	1
10	С	(-∞,∞)	1
11	D	(7/2,1/4)	1
12	D	49	1
13	A	A= sum of the numbers appearing on two dice is 6	1
		=(1,5),(5,1),(2,4),(4,2),(3,3)	
		n(A)=5	
		B= number 4 has appeared at least once	
		=(1,4),(4,1),(2,4),(4,2),(3,4),(4,3),(4,4),(4,5),(5,4),(4,6),(6,4)	
		A∩B=(2,4),(4,2) n(A∩B)=2	
		Required probability = $P(B/A)=n(A)n(A\cap B)=52$	
14	а	$10k^2$ +9k-1=0, (10k-1)(k+1)=0 so k=1/10	1
15	а	P(65≤X≤75)=P(65−60)/5<(X−μ)/σ<(75−60)/5	1
		=P(1 <z<3)< td=""><td></td></z<3)<>	
		=P(Z<3)-P(Z<1)	

		So , $\sum xi pi = 5$ Net expected g	0 ;ain = 50 – 100 =	= -50 So gain is –	50.
		0	<u>9999</u> 10000	0	
		500000	<u>1</u> 10000	50	
27	а	Prize(x _i)	pi	x _i p _i	1
26	С	A ² -B ² +BA - AB			1
25	С	$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{-b}{-a}$	$\frac{d\sin\theta}{d\sin\theta} = \frac{b}{a}; \frac{d^2y}{dx^2} = 0$)	1
		y = x is contin	nuous but not d	ifferentiable at $x = 0$	
24	с	y = x has a sh	arp point at <i>x</i> =	0	1
			$\begin{pmatrix} 0\\ 0 \end{pmatrix}$	$ \begin{array}{ccc} .3 & 0.2 \\ .1 & 0.5 \end{array} $	
23	d	∵ 1 – a11, 1 – a	a22 > 0 and I –	A > 0 and it is true for	1
22	С	Since Hari is fa meters	ster by 4 secs.	• he beats Mohan by = $\frac{100}{20}$	$-2 \times 4 = 20$ 1
21	a	$\frac{\frac{\sum (\frac{p_1}{p_0})(p_0q_0)}{\sum (p_0q_0)} X \ 10^{-1}$			1
24		D (<i>p</i> 1)		ction - B	
20	C	$\frac{\sum p_1 q_0}{\sum p_0 q_0} X1$			1
19	D	_		peyre's and Paasche's inc	
18	A		ear prices		1
17	A	0.4 ²)/2i=0.536	52	$ity=(e^{-\alpha}x \alpha^{r})/ri = (e^{-0.4})$	
1.7		So, the probability of the proba	ility of getting n bability that the	y with replacement. o defective egg = 0.9^{10} ere is at least one defective	
16	C	•	00 0	fectiv1e =10/100=1/10 non-defective=1-0.1=0.	9
		-	$3 \approx 0.1574 = 15.7$	NORM.S.DIST(1,TRUE)) ≈ 4%1	2

28	а	$n = 100, p = 2/10, q = 8/10, \sigma = \sqrt{npq} = \sqrt{100 X \frac{2}{10}} X \frac{8}{10} = 4$	1
29	a	$TC = VC + FC = x^2 + 2x + 8100$	1
		$AC = x + 2 + \frac{8100}{x}$	
		$\frac{d(AC)}{dx} = 1 - \frac{8100}{x^2} = 0$	
		$X^2 = 8100 \qquad \qquad \therefore x = 90$	
30	b	Time ratio = 2 : 3 : 4 Profit sharing ratio = 6: 7: 8	1
		Investment ratio = $\frac{6}{2}: \frac{7}{3}: \frac{8}{4} = 9:7:6$	
31	b	$\frac{\sum p_1}{\sum p_0} X \ 100 = \frac{345}{340} = 119.45$	1
32	d	Fisher's ideal index	1
33	а	Laspeyres index	1
34	с	1764	1
35	а	P(x > 518) = 1 - p(x < 518)	1
		= 1 - P(z < 1) = 1 - 0.8413	
		= 0.1587	
36	d	The relation R_m defined as $a \equiv b \pmod{m}$ is reflexive, symmetric and transitive $\therefore R_m$ is an equivalent relation	1
37	b	∵ 876 (mod24) = 12	1
		\div 8.40 PM will change to 8.40 AM after 12 hours, further after 30 minutes the time will be 9.10 AM	
38	b	Let total capital be = x & let C's contribution = y , B's contribution=	1
		$\frac{x}{3}$,	
		A's contribution = $\frac{x}{3} + y$	
		Now (A+B+C)'s contribution = $x \Rightarrow x = 6y$ hence their contributions are $2y + y$: $2y$: y i.e., in the ratio 3: 2: 1	
39	C	$P(r < 2) = P(0 \text{ or } 1) = 10C_0 \left(\frac{1}{2}\right)^{10} = \frac{1+10}{1024} = \frac{11}{1024}$	1
40	b	P(x < 54) = P(z < 1.5)	
		= 0.9332 = 93.32 %	

41	а	E(x)=30x(1/6)=5	1
42	b	Speed of boat is x km/h ,speed of current is y km/h	1
		(x+y)5=25 and (x-y)3=15 x = 4, y=1km/h	
43	b	$Milk = 40\left(1 - \frac{4}{40}\right)^3 = 29.16$	1
44	а	$TR=px=(75x-x^2)/3$	1
		P=TR-TC=(75x-x ²)/3 -(3x-100)	
		$\frac{dp}{dx} = 22 \cdot 2x/3 = 0$	
		x=33	
45	С	Z=(20-12)/4 =2	1
46	С	$\begin{pmatrix} A \\ B \\ C \end{pmatrix} = \begin{pmatrix} 400 & 300 & 100 \\ 300 & 250 & 75 \\ 500 & 400 & 150 \end{pmatrix} \begin{pmatrix} 50 \\ 20 \\ 40 \end{pmatrix}$	1
		cost incurred by the organization on village X =30000	
47	С	cost incurred by the organization on village Y=23000	1
48	b	cost incurred by the organization on village Z=39000	1
49	C	$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 400 & 300 & 100 \\ 300 & 250 & 75 \\ 500 & 400 & 150 \end{pmatrix} \begin{pmatrix} 2/100 \\ 4/100 \\ 20/100 \end{pmatrix}$	1
		The total number of toilets that can be expected after the promotion in village X =40	
50	d	The total number of toilets that can be expected after the promotion in village Z=56	1

Sample Question Paper - 4 <u>CLASS: XII</u> Session: 2021-22 Applied Mathematics (Code-241) Term - 1

Time Allowed: 90 minutes General Instructions:

Maximum Marks: 40

1. This question paper contains three sections – A, B and C. Each part is compulsory.

2. Section - A has 20 MCQs, attempt any 16 out of 20. 3. Section - B has 20 MCQs, attempt any 16 out of 20

4. Section - C has 10 MCQs, attempt any 8 out of 10.

5. There is no internal choice in any section.

6. All Questions carry equal Marks.

			<u>SECTI</u>	<u> ON – A</u>			
	In this	section, atter Each Q	npt any 16 q Juestion is of		-	ions 1 – 20.	
1.	The value of 18	x10 (mod 7) is	:				1
	(a) 5	(b) 4	(c) :	3	(d) 2		
2.	120 CM, then					neter of the rectangle is d) Breadth <= 20cm	1
3.	A boat running d same distance up	lownstream co	vers a distand s 4 hours. Wh	ce of 16 km nat is the sp	in 2 hours v beed of the b	while for covering the oat in still water?	1
4.	If $x \equiv 4 \pmod{7}$,	, then positive	values for x a	re :			1
	(a) {4,11,18,}	(b) {11	,18,25,}	(c) {4,8,1	12,}	(d) {1,8,15,}	
5.	If A is a square m	natrix of order	$\overline{3 \text{ and } A } = 2$, then the v	alue of -AA	' is :	1
	(a) 4	(b) 2	(c) ·	-2 (d)) -4		
6.	If A and B are squ B is :					AB =I, then the value of	1
	(a) 3	(b) 1/3	(c) -3	(d	l) -1/3		

7.	If the area of the triangle with vertices (1, -1), (-4, k) and (-3,-5) is 24 square units then the values of k are :	1
	(a) -6, 18 (b) 16, 8 (c) 6, -18 (d) -16, 8	
8.	If solving a system of linear equations in 3 variables by Cramer's rule, we get	1
	$D \neq 0$ and $D_1 = D_2 = D_3 = 0$, then the system of linear equations has : (a) no solution (b) unique solution	
	(c) infinitely many solutions (d) trivial solution	
9.	The demand function of a monopolist is given by x = 100 - 4p. The quantity at which MR (marginal revenue) = 0 will be	1
	(a) 25 (b) 10 (c) 50 (d) 40	
10.	The function $f(x) = x^x$, $x > 0$, is decreasing on the interval	1
	(a) $(0, e]$ (b) $(0, 1/e)$ (c) $[1/e, \infty)$ (d) none of these	
11.	The maximum slope of the tangent to the curve $y = -x^3 + 3x^2 + 9x - 27$ is	1
	(a) 0 (b) 12 (c) 16 (d) 32	
12.	In what ratio must a grocer mix two variety of pulses costing Rs.85 per kg and Rs.100 per kg respectively so as to get a mixture worth Rs. 92 per kg?	1
	(a) 7 : 8 (b) 8 : 7 (c) 5 : 7 (d) 7 : 5	
13.	If Z is a standard normal variable, then $P(0 < Z < 1.7)$ is equal to :	1
	(a) F(0) - F(1.7) (b) F(1.7) - F(0) (c) 1 - F(1.7) (d) F(1.7) - 1	
14.	A die is rolled thrice. If the event of getting an even number is a success, then the probability of getting at least two successes is :	1
	(a) 7/8 (b) ¹ / ₄ (c) 2/3 (d) 1/2	
15.	If the variance of a Poisson distribution is 2, then P(X=2) is :	1
	(a) $2/e^2$ (b) $2e^2$ (c) $4/e^2$ (d) $4e^2$	
16.	There are 50 telephone lines in an exchange. The probability that any one of them will be busy is 0.1. The probability that all the lines are busy is :	1
	(a) $\frac{5^{0}e^{-5}}{L0}$ (b) 1 - $\frac{5^{0}e^{-5}}{L0}$ (c) $\frac{5^{50}e^{-5}}{L50}$ (d) 1 - $\frac{5^{50}e^{-5}}{L50}$	
17.	The probability of guessing at least 8 correct answers out of 10 true/false question is :	1
	(a) 7/64 (b)7/128 (c) 7/256 (d) 35/1024	
		1

18.	In Laspeyre's index number weight is Considered as		1
	(a) quantity in base year. (b) quantity in current year		I
	(c) price in base year (d) price in current year.		I
19.	Given that $\Sigma p_0 q_0 = 6600$, $\Sigma p_0 q_1 = 8255$, $\Sigma p_1 q_0 = 9550$, $\Sigma p_1 q_1 = 12010$, where subscard and 1 are used for base year and current year respectively. The Paashe's index numbers	-	1
	(a) 144.70 (b) 145.49 (C) 145.09 (d) 144.49		1
20.	If $\Sigma p_0 = 141_1 \Sigma p_1 = 167$, The price index number by simple aggregative method is	1	
	(a) 118.44 (b) 0.84 (c) 1.18 (d) 84.4		
	<u>SECTION – B</u>		
	In this section, attempt any 16 questions out of the Questions 21 - 40.		
	Each Question is of 1-mark weightage.		
21.	In a 1000 m race, A reaches the final point in 56 seconds and B reaches in 70 seconds. By how much distance does A beat B?	1	_
	(a) 100m (b) 120m (c) 150m (d) 200m		
22.	It is currently 8.00 AM. What time (in A.M. or P.M.) will be in next 500 hours?	1	_
	(a) 8 AM (b) 8 PM (c) 4 PM (d) 4 AM		
23.	A and B invest in a business in the ratio 5 : 6. If 10% of the profit goes to charity and A get Rs.4500 as his share in profit, the total profit is	1	_
	(a)Rs.1000 (b)Rs.12100 (c) Rs.13200 (d) Rs. 9900		
24.	[(3x7) +5] (mod 4) is	1	_
	(a) 5 (b) 4 (c) 3 (d) 2		
25.	A, B and C started a business by investing money in the ratio 5 : 7 : 9. After 4 months D joined them by investing money equal to the investment of B. Find the ratio of their profits at the end of a year.	1	
	(a) 15: 17: 28: 25 (b) 15: 21: 27: 14 (c) 12: 15: 17: 9 (d) 12: 17: 19: 13		
26.	If $A = \begin{bmatrix} -3 & x \\ y & 5 \end{bmatrix}$ and $A = A'$, then	1	
	(a) $x = 5, y = -3$ (b) $x = -3_y = 5$ (c) $x = y$ (d) none of these		

27.	The demand matrix which is consistent with the technology matrix $A = \begin{bmatrix} 0.2 & 0.3 \\ 0.4 & 0.1 \end{bmatrix}$	1
	and the output matrix $X = \begin{bmatrix} 25\\ 21 \end{bmatrix}$ is	
	(a) $\begin{bmatrix} 8.9\\ 3.7 \end{bmatrix}$ (b) $\begin{bmatrix} 18.7\\ 13.9 \end{bmatrix}$ (c) $\begin{bmatrix} 13.7\\ 8.9 \end{bmatrix}$ (d) $\begin{bmatrix} 13.9\\ 8.7 \end{bmatrix}$	
8.	The maximum value of $\frac{\log x}{x}$ is	1
	(a) e (b) 2e (c) 1/e (d) 2/e	
.9.	Given that $x = sint$, $y=cost$, then value of d^2y/dx^2 is :	1
	(a)- tant (b) – $\sec^2 t$ (c) – $\sec^3 t$ (d) - sect	
30.	If the cost function of a certain Commodity is $C(x) = 2000 + 50x - \frac{x^2}{5}$, then the average cost of producing 5 units is	1
	(a) Rs.451 (b) Rs.450 (c) Rs.449 (d) Rs.2245	
31.	If the mean and standard deviation of a binomial distribution are 12 and 2 respectively, then the value of its parameter p is	1
	(a) 1/4 (b) 1/3 (c) 1/2 (d) 2/3	
32.	For a binomial variable x, if n=4 and P(x=0) = 16/81 ,then P(x=4) is	1
	(A) 1/3 (b)1/27 (c)1/81 (d)1/16	
33.	A bag contains 2 white and 4 black balls. A ball is drawn 5 times with replacement. The probability that at least 4 of the balls drawn are white is	1
	(a) 8/243 (b) 10/243 (c) 11/243 (d) 32/243	
34.	In a binomial distribution the probability of getting success is 1/4 and the standard deviation is 3. Then its mean is	1
	(a) 6 (b) 8 (c) 12 (d) 48	
35.	Two dice are thrown n times in succession. The probability of obtaining a double six at least once is	1
	(A) $\frac{1}{36}^{n}$ (b) 1- $(\frac{35}{36})^{n}$ (c) $(\frac{1}{12})^{n}$ (d) none of these	

36.							1
	Commodity	Rice	Wheat	Fish	Potato	Coal	
	Price in 2016(p0)	30	22	54	20	15	
	Price in 2017(p1)	35	25	64	25	18	
	For this data pri	ice index using	the price relat	ive method is :		1	
	(a)118.44 (l	b)118.77 (d	c)118.55 (d	l) 118.66			
37.	Given that $\sum p_0$ index number		q ₁ =484, ∑p ₁ q ₀	₀ ==623, ∑p ₁ q	1=517, then fi	sher's price	2 1
	(a)103.29	(b)103.34	(c)107.64	(d)106.74			
38.							1
	Items	Food	Rent	Cloth	Fuel		
	Price in 2017	200	100	150	50		
	Price in 2019	280	200	120	100		
	Weight	30	20	20	10		
	The consumer average of pric (a)147.5 (l	ce relative met		basis of 2013 (d)156.7	7 for data usin	g weighted	
39.	Index numbers	s are used for					1
	(a) forecasting	l		(b) fix	ked prices		
	(c) different pr	rices		(d) co	onstant prices		
40.	For the given 5	5 values 15, 24	, 18, 33, 42 th	e three years	moving avera	iges are	1
	(a) 19, 22, 3	33 (b) 19, 2	5, 31 (c) 19	9, 30, 31 (d) 19, 25, 33		
	1		54				1

	<u>SECTION – C</u>	
	In this section, attempt any 8 questions out 10 Questions. Each question is of 1 mark weightage. (Questions 46-50 are based on a Case-Study).	
41.	A runs $1\frac{2}{3}$ times as fast as B. If A gives B a start of 80m, how far must the winning post be so that A and B may reach it at the same time.	1
	(a)100m (b)120m (c)200m (d)240m	
42.	Pipes A and B can fill a tank in 4 hour and 5 hour respectively. Another pipe C can empty the full tank in 10 hours. If all the three pipes are opened together then the tank will be filled in $(a) 1^{2}$ hours (b) 2 ⁶ hours (c) 2 ⁵ hours (d) 4 ⁶ hours	1
43.	(a) $1\frac{2}{7}$ hours(b) $2\frac{6}{7}$ hours(c) $3\frac{5}{7}$ hours(d) $4\frac{6}{7}$ hoursIf the total cost function is given by $C(x)=10x-7x^2+3x^3$, then the marginal average	1
43.	cost function (MAC) is given by	I
44.	(a) $10-14x+9x^2$ (b) $10-7x+3x^2$ (c) $-7+6x$ (d) $-14+18x$ If x has a Poisson distribution such that P(x=1)=P(x=2) and $e^{-2}=0.1353$, then	1
44.	P(x=4) is	1
	(a) 0.0213 (b) 0.9787 (c) 0.0902 (d) 0.9098	
45.	The marks obtained in a certain exam follow normal distribution with mean 30 and standard deviation 10. If 1000 students appeared in a exams, The number of students scoring less than 33 marks is	1
	(a) 617 (b) 618 (c) 716 (d) 867	
	Case study	

	A industry produces only two goods x and y. The two commodities serve as interme input in each others productions. 0.1 unit of x and 0.55 unit of y are needed to produ of x. Where as 0.4 unit of X and 0.2 unit of y are needed to produce a unit of y. For fin consumption to 40 units of X and 140 units of y are needed. Based on the above info	uce a unit nal
46.	answer the following questions: The technology matrix A is	1
то.	(a) $\begin{bmatrix} 0.1 & 0.4 \\ 0.55 & 0.2 \end{bmatrix}$ (b) $\begin{bmatrix} 0.1 & 0.2 \\ 0.55 & 0.4 \end{bmatrix}$ (c) $\begin{bmatrix} 0.2 & 0.4 \\ 0.55 & 0.1 \end{bmatrix}$ (d) $\begin{bmatrix} 0.1 & 0.55 \\ 0.4 & 0.2 \end{bmatrix}$	
47.	The demand Matrix D is	1
	(a) $\begin{bmatrix} 240\\ 140 \end{bmatrix}$ (b) $\begin{bmatrix} 140\\ 240 \end{bmatrix}$ (c) $\begin{bmatrix} 100\\ 140 \end{bmatrix}$ (d) $\begin{bmatrix} 240\\ 100 \end{bmatrix}$	
48.	(I-A) is (where I is the identity matrix of the order 2) :	1
	(a) $\begin{bmatrix} 0.9 & 0.8\\ 0.45 & 0.6 \end{bmatrix}$ (b) $\begin{bmatrix} 0.9 & -0.4\\ -0.55 & 0.8 \end{bmatrix}$ (c) $\begin{bmatrix} 0.8 & -0.4\\ -0.55 & 0.9 \end{bmatrix}$ (d) $\begin{bmatrix} 0.9 & -0.55\\ -0.4 & 0.8 \end{bmatrix}$	
49.	$(I-A)^{-1}$ is	1
	$(a) \frac{1}{0.5} \begin{bmatrix} 0.8 & 0.4 \\ 0.55 & 0.9 \end{bmatrix} (b) \frac{1}{0.5} \begin{bmatrix} 0.6 & 0.45 \\ 0.8 & 0.9 \end{bmatrix} (c) \frac{1}{0.5} \begin{bmatrix} 0.9 & 0.55 \\ 0.4 & 0.8 \end{bmatrix} (d) \frac{1}{0.5} \begin{bmatrix} 0.8 & -0.55 \\ -0.4 & 0.9 \end{bmatrix}$	
50.	The gross output of two commodities are	1
	(a) $x = 516, y = 496$ (b) $x = 470, y = 510$ (c) $x = 496, y = 516$ (b) $x = 470, y = 510$ (c) $x = 496, y = 516$ (c) $x = 510, y = 420$	
	Marking Scheme SQP - 4 XII Applied Mathematics Term - I Code-241 56	

Q.	Correct	Hints/Solutions
N.	option	
		Section – A
1	а	180 (mod7)
		=5, (5 is remainder when 180 is divided by 7)
2		breadth=x, Length = $2x$ Perimeter = $2(x + 2x) \ge 120$
3		$6x \ge 20$ $x \ge 20$ cm. Speed of hoat in still water - x km/hr
		Speed of boat in still water = x km/hr speed of stream = y km/hr downstream speed = u= (x+y) km/hr upstream speed = v= (x-y) km/hr then x=(u + v)/2 Here u=16/2=8km/hr , v= 16/4 = 4km/hr x=(8+4)/2 = 6 km/hr
4		<pre>{4, 11, 18,} x=4 (mod 7) x-4 is divided by 7 x-4 = 7k, k is an integer Put k = 0, 1, 2, we get positive x = 4, 11, 18,</pre>
5	d	-AA' = -A A' =(-2)(2) = -4
6	d	$AB=I$ $ AB = I $ $ B =\frac{1}{ A }=-1/3$
7	С	6, -18
8	d	Trivial solution
9		50 x=100-4p R=px= $\frac{1}{4}$ [100x-x ²] MR = $\frac{d}{dx}$ (R) = $\frac{1}{4}$ [100-2x) MR=0 \Rightarrow x=50
10	С	$\frac{dx}{[1/e,\infty)} \qquad y = x^{x}$ $\frac{dy}{dx} = x^{x} [\log x + 1]$ y is increasing $\Rightarrow \frac{dy}{dx} \ge 0$ $x^{x} [\log x + 1] \ge 0$ $\log x + 1 \ge 0 \Rightarrow \log x \ge -1$ $x \ge e^{-1} \qquad x \ge \frac{1}{e}$
11	-	$ \frac{12}{y=-x^3+3x^2+9x-27} $
	<u> </u>	57

		Slope of curve $v = \frac{dy}{dx}$
		For maxima $\frac{dv}{dx} = 0$ -6x+6=0 x =1
		$\frac{d2v}{dx^2} = -6$ x=1 is point of maxima
		At X=1 slope V is max
		Max.V at $x=1 = -3 (1)^2 + 6(1) + 9 = -3 + 6 + 9 = 12$
12	b	8:7 C.D. of choose we have total and the second
		C.P. of cheaper pulses 'c' = Rs.85 perkg C.P. of dearer pulses 'd' = Rs.100 per kg
		$\frac{\text{quantity of cheaper pulses}}{\text{quantity of dearer pulses}} = \frac{d-m}{m-c}$
		$=\frac{100-92}{92-85}=\frac{8}{7}$
		where m = mean price of mixture = Rs.92/Kg
13	b	F(1.7) – F(0)
14	d	1/2
		$n = 3$, $p = \frac{1}{2}$, $q = \frac{1}{2}$ (Bernoulli trials)
		$P(X \ge 2) = P(X=2) + P(X=3)$
15	а	2/e ²
		Variance of a Poisson distribution = λ = 2
		$P(r) = \frac{\lambda^r e^{-\lambda}}{Lr} = 2/e^2$
16	С	Put r = 2 n=50, p= 0.1
10	C	$\lambda = np = 50 \text{ X } 0.1 = 5$
		$P(r) = \frac{\lambda^r e^{-\lambda}}{\lfloor r \rfloor}$
17	b	7/128
		Binomial distribution B (10, 1/2)
		n=10, $p = 1/2P(X > 0) = P(X = 0) + P(X = 10)$
18	а	$P(X \ge 8) = P(x=8) + P(X=9) + P(X=10)$ Quantity in base year
19	b	145.49 $\Sigma p_{1q_1} \times 100$
		Paasche's index number= $\frac{\Sigma p1q1}{\Sigma p0q1} X 100$
		$=\frac{12010}{8255} X \ 100$
20		=145.49
20	а	118.44 By simple aggregate method
		$P_{0_1} = \frac{\Sigma p_1}{\Sigma p_0} X \ 100$
		•
		$=\frac{167}{141} X \ 100 = 118.44$
		Section –B
	<u> </u>	58

Speed of B = $\frac{1000}{70}$ m/sec. Distance Covered by B after A has finished the race Distance Covered by B in (70-56) = 14 sec. = $\frac{100}{7}$ X1 = 200m 200m 21 d 400 A.M. 500 (mod 24) = 20 (mod 24) (500-24X20 + 20) 500 hours is equivalent to 20 hours Now 8+ 20 = 4 (mod 24) Hence it will be 4:00 A.M. 23 a Rs11,000 A:B = 5:6 Total 5+6=11 Let total profit = Rs. x $\frac{5}{11}$ of (90% of x) = 4500 x = Rs11,000 x = Rs11,000 (Charity = 10%.) 24 d [(3x7) +5] (mod4) = 26 (mod 4) = 2 (mod 4) = 26 (mod 4) = 2 (mod 4) 25 b 15:21:27:14 Let invested amount of A, B and C are 5x, 7x and 9x. D joined with 7x (equal to B's invest). A, B & C invested for 12 months whereas D invested for 12-4 = 8 months ·A : B : C : D = 5x X 12 :7x X 12 : 9x X 12 : 7x X 8 =15:21:27:14	21	d	200m
Distance Covered by B after A has finished the race Distance Covered by B in (70-56) = 14 sec. $=\frac{100}{7} \times 14 = 200m$ 200m 22 d 4:00 A.M. 500 (mod 24) $\equiv 20 (mod 24)$ (500=24X20 + 20) 500 hours is equivalent to 20 hours Now 8 + 20 = 4 (mod 24) Hence it will be 4:00 A.M. 23 a Rs11,000 A:B = 5:6 Total 5+6=11 Let total profit = Rs. x $\frac{5}{11} of (90\% of x) = 4500$ x = Rs11,000 (Charity = 10%) 24 d 2 [(3x7) +5] (mod4) $\equiv 26 (mod 4) = 2 (mod 4)$ 25 b 15:21:27:14 Let invested amount of A, B and C are 5x, 7x and 9x. D joined with 7x (equal to B's invest). A, B & C invested for 12 months whereas D invested for 12-4 = 8 months $\therefore A : B : C : D$ $= 5x \times 12: 7x \times 12: 9x \times 12: 7x \times 8$ = 15:21:27:14 26 (c) $\begin{array}{c} X=y \\ x=y \\$			Speed of B = $\frac{1000}{70}$ m/sec.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
22 d 4.00 A.M. 500 (mod 24) (500=24X20 + 20) 500 hours is equivalent to 20 hours Now 8 + 20 = 4 (mod 24) Hence it will be 4:00 A.M. 23 a Rs11,000 A:B = 5:6 Total 5+6=11 Let total profit = Rs. x $\frac{5}{11}$ of (90% of x) = 4500 x = Rs11,000 (Charity = 10%.) 24 d 2 [(3x7) +5] (mod4) = 26 (mod 4) = 2 (mod 4) 25 b 15:21:27:14 Let invested amount of A, B and C are 5x, 7x and 9x. D joined with 7x (equal to B's invest). A, B &C invested for 12 months whereas D invested for 12-4 = 8 months $\therefore A: B: C: D$ = 5x X 12:7x X 12:9x X 12:7x X 8 =15:21:27:14 26 (c) $X=y$ A=A' (-3 x) = (-3 x)			Distance Covered by B in (70-56) = 14 sec.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$=\frac{100}{7}$ X 14 = 200m 200m
$\begin{bmatrix} = 20 \pmod{24} & (500=24X20+20) \\ 500 \text{ hours is equivalent to 20 hours} \\ \text{Now 8+20 = 4 (mod 24)} & \text{Hence it will be 4:00 A.M.} \\ \end{bmatrix}$ 23 a Rs11,000 A:B = 5:6 Total 5+6=11 Let total profit = Rs. x $\frac{5}{11} \text{ of } (90\% \text{ of } x) = 4500$ x = Rs11,000 (Charity = 10%.) 24 d 2 [(3x7) +5] (mod4) = 26 (mod 4) = 2 (mod 4) 25 b 15:21:27:14 Let invested amount of A, B and C are 5x, 7x and 9x. D joined with 7x (equal to B's invest). A, B &C invested for 12 months whereas D invested for 12-4 = 8 months $\therefore A:B:C:D$ = 5x X 12:7x X 12:9x X 12:7x X 8 = 15:21:27:14 26 (c) $X=y$ A=A' $\begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix} = \begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix}$ x=y 27 (c) $\begin{bmatrix} 13.7 \\ 8.9 \end{bmatrix}$ AX+D=X D=(I-A)X = $\begin{pmatrix} 0.8 & -0.3 \\ -0.4 & 0.9 \end{bmatrix} \begin{bmatrix} 25 \\ 21 \end{bmatrix} = \begin{pmatrix} 13.7 \\ 8.9 \end{bmatrix}$	22	d	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
Now 8+ 20 = 4 (mod 24) Hence it will be 4:00 A.M. 23 a Rs11,000 A:B = 5:6 Total 5+6=11 Let total profit = Rs. x $\frac{5}{11}$ of (90% of x) = 4500 x = Rs11,000 (Charity = 10%.) x = Rs11,000 (Charity = 10%.) 24 d 2 [(3x7) +5] (mod4) = 2 (mod 4) = 26 (mod 4) = 2 (mod 4) 25 b 15:21:27:14 Let invested amount of A, B and C are 5x, 7x and 9x. D joined with 7x (equal to B's invest). A, B &C invested for 12 months whereas D invested for 12-4 = 8 months · A : B : C : D = 5x X 12 :7x X 12 :9x X 12 : 7x X 8 =15:21:27:14 26 (c) X=y A=4' $\begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix} = \begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix}$ x=y 27 (c) $\begin{bmatrix} 13.7 \\ -0.4 & 0.9 \end{bmatrix} \begin{bmatrix} 25 \\ 21 \end{bmatrix} = \begin{pmatrix} 13.7 \\ 8.9 \end{bmatrix}$ 27 (c) 1/e 26			
23 a Rs11,000 A:B = 5:6 Total 5+6=11 Let total profit = Rs. x $\frac{5}{11}$ of (90% of x) = 4500 x = Rs11,000 (Charity = 10%.) 24 d 2 [(3x7) +5] (mod4) = 26 (mod 4) = 2 (mod 4) 25 b 15:21:27:14 Let invested amount of A, B and C are 5x, 7x and 9x. D joined with 7x (equal to B's invest). A, B &C invested for 12 months whereas D invested for 12-4 = 8 months $\therefore A: B: C: D$ = 5x X 12:7x X 12:9x X 12: 7x X 8 =15:21:27:14 26 (c) $A=A'$ $\begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix} = \begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix}$ x=y 27 (c) $\begin{bmatrix} 13.7 \\ 8.9 \end{bmatrix}$ AX+D=X D=(I-A)X = $\begin{pmatrix} 0.8 & -0.3 \\ -0.4 & 0.9 \end{bmatrix} \begin{bmatrix} 25 \\ 21 \end{bmatrix} = \begin{pmatrix} 13.7 \\ 8.9 \end{bmatrix}$			
$\begin{array}{c cccc} A:B = 5:6 \\ Total 5+6=11 \\ Let total profit = Rs. x \\ & \frac{5}{11} of (90\% of x) = 4500 \\ x = Rs11,000 (Charity = 10\%.) \end{array}$ $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22		
Total 5+6=11 Let total profit = Rs. x $\frac{5}{11}$ of (90% of x) = 4500 x = Rs11,000 (Charity = 10%.) 24 d 2 [(3x7) +5] (mod4) = 26 (mod 4) = 2 (mod 4) 25 b 15:21:27:14 Let invested amount of A, B and C are 5x, 7x and 9x. D joined with 7x (equal to B's invest). A, B & C invested for 12 months whereas D invested for 12-4 = 8 months $\therefore A : B : C : D$ = 5x x 12:7x X 12: 9x X 12: 7x X 8 =15:21:27:14 26 (c) $X=y$ A=A' $\begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix} = \begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix}$ x=y 27 (c) $\begin{bmatrix} 13.7 \\ 8.9 \end{bmatrix}$ AX+D=X D=(I-A)X = $\begin{pmatrix} 0.8 & -0.3 \\ -0.4 & 0.9 \end{bmatrix} \begin{bmatrix} 25 \\ 21 \end{bmatrix} = \begin{pmatrix} 13.7 \\ 8.9 \end{pmatrix}$	23	а	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{bmatrix} \frac{5}{11} & \text{of } (90\% & \text{of } x) = 4500 \\ x = \text{Rs}11,000 (\text{ Charity} = 10\%.) \end{bmatrix}$ 24 d 2 $\begin{bmatrix} [(3x7) +5] & (\text{mod} 4) \\ = 26 & (\text{mod} 4) \\ = 26 & (\text{mod} 4) \\ = 26 & (\text{mod} 4) \end{bmatrix} = 2 & (\text{mod} 4) \end{bmatrix}$ 25 b 15:21:27:14 Let invested amount of A, B and C are 5x, 7x and 9x. D joined with 7x (equal to B's invest). A, B & C invested for 12 months whereas D invested for 12-4 = 8 months $\therefore A: B: C: D$ $= 5x X 12 : 7x X 12 : 9x X 12 : 7x X 8$ $= 15:21:27:14$ 26 (c) $\begin{bmatrix} X=y\\ A=A'\\ \left(-3 & x\\ y & 5\right) = \left(-3 & x\\ y & 5\right) \\ x=y \end{bmatrix}$ 27 (c) $\begin{bmatrix} 13.7\\ 8,9 \end{bmatrix}$ AX+D=X D=(I-A)X $= \begin{pmatrix} 0.8 & -0.3\\ -0.4 & 0.9 \end{pmatrix} \begin{bmatrix} 25\\ 21 \end{bmatrix} = \begin{pmatrix} 13.7\\ 8.9 \end{bmatrix}$ 20 (c) $\begin{bmatrix} 1/e\\ \end{bmatrix}$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			A
24 d 2 [(3x7) +5] (mod4) = 26 (mod 4) = 2 (mod 4) 25 b 15:21:27:14 Let invested amount of A, B and C are 5x, 7x and 9x. D joined with 7x (equal to B's invest). A, B &C invested for 12 months whereas D invested for 12-4 = 8 months $\therefore A : B : C : D$ = 5x X 12 :7x X 12 : 9x X 12 : 7x X 8 =15:21:27:14 26 (c) X=y A = A' $\begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix} = \begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix}$ x=y 27 (c) $\begin{bmatrix} 13.7 \\ 8.9 \end{bmatrix}$ AX+D= X D=(I-A)X = $\begin{pmatrix} 0.8 & -0.3 \\ -0.4 & 0.9 \end{bmatrix} \begin{bmatrix} 25 \\ 21 \end{bmatrix} = \begin{pmatrix} 13.7 \\ 8.9 \end{bmatrix}$			
$\begin{bmatrix} [(3x7) +5] \pmod{4} \\ \equiv 26 \pmod{4} \\ \equiv 2 \pmod{4} \\ = 2 \binom{1}{2} \begin{bmatrix} (3x7) + 5] \pmod{4} \\ \equiv 2 \pmod{4} \\ \equiv 2 \binom{1}{2} \begin{bmatrix} (3x7) + 5] (\mod{4}) \\ \equiv 2 \binom{1}{2} \begin{bmatrix} (3x7) + 5] (\mod{4}) \\ = 2 \binom{1}{2} \begin{bmatrix} (3x7) + 5] (\arg{4}) \\ = 2 \binom{1}{2} \begin{bmatrix} (3x7) + 5] (\arg{4}) \\ = 5x \times 12 : 7x \times 12 : 9x \times 12 : 7x \times 8 \\ = 15 : 21 : 27 : 14 \end{bmatrix}$ 26 $\begin{bmatrix} (c) & X = y \\ A = A' \\ & \begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix} = \begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix} \\ & x = y \end{bmatrix}$ 27 $\begin{bmatrix} (c) & \begin{bmatrix} 13.7 \\ 8.9 \end{bmatrix} \\ AX + D = X \qquad D = (I - A)X \\ & = \begin{pmatrix} 0.8 & -0.3 \\ -0.4 & 0.9 \end{pmatrix} \begin{bmatrix} 25 \\ 21 \end{bmatrix} = \begin{pmatrix} 13.7 \\ 8.9 \end{bmatrix}$ 29 $\begin{bmatrix} (c) & 1/e \end{bmatrix}$	24	d	
$= 26 \pmod{4} = 2 \pmod{4}$ $= 2 (2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + $	24	u	
25 b 15:21:27:14 Let invested amount of A, B and C are 5x, 7x and 9x. D joined with 7x (equal to B's invest). A, B &C invested for 12 months whereas D invested for 12-4 = 8 months $\therefore A: B: C: D$ = 5x X 12:7x X 12: 9x X 12: 7x X 8 =15:21:27:14 26 (c) $X=y$ A=A' $\begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix} = \begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix}$ x=y 27 (c) $\begin{bmatrix} 13.7 \\ 8.9 \end{bmatrix}$ AX+D=X $D=(I-A)X= \begin{pmatrix} 0.8 & -0.3 \\ -0.4 & 0.9 \end{pmatrix} \begin{bmatrix} 25 \\ 21 \end{bmatrix} = \begin{pmatrix} 13.7 \\ 8.9 \end{bmatrix}$			
Let invested amount of A, B and C are 5x, 7x and 9x. D joined with 7x (equal to B's invest). A, B &C invested for 12 months whereas D invested for 12-4 = 8 months $\therefore A : B : C : D$ = 5x X 12 : 7x X 12 : 9x X 12 : 7x X 8 = 15:21:27:14 26 (c) $\begin{aligned} X=y \\ A=A' \\ \begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix} = \begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix} \\ x=y \end{aligned}$ 27 (c) $\begin{bmatrix} 13.7 \\ 8.9 \end{bmatrix}$ AX+D=X $D=(I-A)X= \begin{pmatrix} 0.8 & -0.3 \\ -0.4 & 0.9 \end{bmatrix} \begin{bmatrix} 25 \\ 21 \end{bmatrix} = \begin{pmatrix} 13.7 \\ 8.9 \end{bmatrix}$	25	b	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	2	
A, B &C invested for 12 months whereas D invested for 12-4 = 8 months $\therefore A : B : C : D$ = 5x X 12 : 7x X 12 : 9x X 12 : 7x X 8 =15:21:27:14 26 (c) $\begin{array}{c} X=y \\ A=A' \\ \begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix} = \begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix}$ x=y 27 (c) $\begin{bmatrix} 13.7 \\ 8.9 \end{bmatrix}$ AX+D=X $D=(I-A)X= \begin{pmatrix} 0.8 & -0.3 \\ -0.4 & 0.9 \end{pmatrix} \begin{bmatrix} 25 \\ 21 \end{bmatrix} = \begin{pmatrix} 13.7 \\ 8.9 \end{bmatrix}$			
= 5x X 12 : 7x X 12 : 9x X 12 : 7x X 8 =15:21:27:14 26 (c) $X=y$ A = A' $\begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix} = \begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix}$ x=y 27 (c) $\begin{bmatrix} 13.7 \\ 8.9 \end{bmatrix}$ $AX+D=X \qquad D=(I-A)X$ $= \begin{pmatrix} 0.8 & -0.3 \\ -0.4 & 0.9 \end{pmatrix} \begin{bmatrix} 25 \\ 21 \end{bmatrix} = \begin{pmatrix} 13.7 \\ 8.9 \end{bmatrix}$ 20 (c) $\frac{1}{e}$			
$= 15:21:27:14$ $26 (c) \begin{array}{l} X=y \\ A=A' \\ \begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix} = \begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix} \\ x=y \end{array}$ $27 (c) \begin{bmatrix} 13.7 \\ 8.9 \end{bmatrix} \\ AX+D=X \qquad D=(I-A)X \\ = \begin{pmatrix} 0.8 & -0.3 \\ -0.4 & 0.9 \end{pmatrix} \begin{bmatrix} 25 \\ 21 \end{bmatrix} = \begin{pmatrix} 13.7 \\ 8.9 \end{bmatrix}$ $20 (c) \begin{array}{l} 1/e \\ 1/e \end{bmatrix}$			∴ A : B : C : D
26 (c) $ \begin{array}{c} X=y \\ A=A' \\ \begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix} = \begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix} \\ x=y \end{array} $ 27 (c) $ \begin{array}{c} \begin{bmatrix} 13.7 \\ 8.9 \end{bmatrix} \\ AX+D=X \qquad D=(I-A)X \\ = \begin{pmatrix} 0.8 & -0.3 \\ -0.4 & 0.9 \end{pmatrix} \begin{bmatrix} 25 \\ 21 \end{bmatrix} = \begin{pmatrix} 13.7 \\ 8.9 \end{pmatrix} $ 20 (c) $ \begin{array}{c} 1/e \end{array} $			= 5x X 12 :7x X 12 : 9x X 12 : 7x X 8
26 (c) $A = A'$ $\begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix} = \begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix}$ x = y 27 (c) $\begin{bmatrix} 13.7 \\ 8.9 \end{bmatrix}$ AX + D = X $D = (I - A)X= \begin{pmatrix} 0.8 & -0.3 \\ -0.4 & 0.9 \end{pmatrix} \begin{bmatrix} 25 \\ 21 \end{bmatrix} = \begin{pmatrix} 13.7 \\ 8.9 \end{pmatrix}20 (c) \frac{1}{e}$			
$ \begin{array}{cccc} & & & & & & & & \\ & & & & & & & \\ & & & & $	26	(0)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	(C)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$\begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix} = \begin{pmatrix} -3 & x \\ y & 5 \end{pmatrix}$
27 (c) $\begin{bmatrix} 13.7\\ 8.9 \end{bmatrix}$ AX+D= X D=(I-A)X $= \begin{pmatrix} 0.8 & -0.3\\ -0.4 & 0.9 \end{pmatrix} \begin{bmatrix} 25\\ 21 \end{bmatrix} = \begin{pmatrix} 13.7\\ 8.9 \end{pmatrix}$ 20 (c) $\frac{1}{e}$			
$AX+D=X D=(I-A)X = \begin{pmatrix} 0.8 & -0.3 \\ -0.4 & 0.9 \end{pmatrix} \begin{bmatrix} 25 \\ 21 \end{bmatrix} = \begin{pmatrix} 13.7 \\ 8.9 \end{pmatrix}$			[13.7]
$= \begin{pmatrix} 0.8 & -0.3 \\ -0.4 & 0.9 \end{pmatrix} \begin{bmatrix} 25 \\ 21 \end{bmatrix} = \begin{pmatrix} 13.7 \\ 8.9 \end{pmatrix}$	27	(c)	[8.9]
20 (c) ^{1/e}			AX+D=X $D=(I-A)X$
20 (c) ^{1/e}			(0.8 - 0.3) [25] (13.7)
			$= \begin{pmatrix} -0.4 & 0.9 \end{pmatrix} \begin{bmatrix} -0.4 \\ 21 \end{bmatrix} = \begin{pmatrix} -0.4 \\ 8.9 \end{pmatrix}$
28 (c) $Y=(\log x)/x$			1/e
	28	(c)	Y=(logx)/x
$dy/dx = [x^*1/x - (logx).1]/x^2$			
for maximum y, dy/dx=0			
$(1-\log x) / x^2 = 0$			
$\log x = 1$ $x = e$			-
$\max y = (\log e) / e = 1 / e$			$\max y = (\log e) / e = 1 / e$
59			59

		1 2									
29	(c)	-sec ³ t	1 (li seat				ļ				
ر ک			$dx/dt = \cos t$								
			$Y = \cos t dy/dt = -\sin t$ $dy/dx = -\tan t$								
I		$d2y/dx^2 = - \sec^2 t (1/\cos t) = -\sec^3 t$									
	+	Rs 449									
30	(c)	AC = C(x))/x=C(5)/5 (ł	nere x = 5)			ļ				
I		= 200	00+250-1/5*	25							
Ļ	<u> </u>	<u> </u>	5								
31	d	2/3 Dia anni al diata					ļ				
71	u	Binomial distr					ļ				
		mean =np =12 Standard devi		7							
		implies npq=4		1-2							
			p= 1-q		=2/3		ļ				
	1	1/81			<u> </u>						
32	С	$P(X=0) = {}^{n}c_{0} P^{0}$	-								
		$={}^{4}c_{0} q^{4}$									
		P(X=0) = 16/	/81 = q ⁴				ļ				
		q= 2/3 p=1-2/3, p=	1 /2								
		P(X = 4) = 1/8	•								
	+	11/243									
33	с	p= 2/(2+4), p									
		$P(X \ge 4) = P(X=4) + P(X=5)$									
			$(2 \ {}^{5}c_{1} + {}^{5}c_{1})$	=11/243							
34	с	12 Binomial dist	····	11 2/4			ļ				
51		Binomial dist		/4, q=3/4 q=3 implies n							
		Mean= np= 9/	-	J=2 IIIIbuca u	p q=9 np=12						
	+	1-(35/36) ⁿ	<u>q - (7,8, -</u>		пр-12						
35	b	X= Number of double six									
		Success= getting double six									
		D = D(c) = 1	126 - 25/5	17							
		r=r(s)-1	/36 q=35/3	0							
		P(X≥1) =1	1-P(X=0) =1-	${}^{n}c_{0} p^{0}q^{36}$							
			=1-(35	5/36) ⁿ							
36	b										
50		Commodity	Rice	Wheat	Fish	Potato	Coal				
		Price in	30	22	54	20	15				
		2016(p0)									
		Price in	35	25	64	25	18				
			<u> </u>								
				60							
				00							

		2017(p1)					
		p1/p0 1	16.67 11	3.64	118.52	125	120
		118.77					
		P ₀₁ =1/N (∑(P ₁ /	P ₀₎ X 100) =593.8	3/5 = 118.	77		
37	d		lex number ₀ / ∑p₀q₀ x ∑p₁q 584 x 517/484) X			06.74	
38	A	147.5					
		Items	Food	Rent		cloth	fuel
		$I = P_1/P_0 X100$	280/200 X100 =140	200/10 =200	0 X100	150/120 X 100 =80	100/50 X100 =200
		I W	4200	4000		1600	2000
		∑IW=11800, ∑W	=80 Index Numb	oer=∑IW/∑	<u>-</u> W=1180	00/80	= 147.5
39	а	Forecasting					
40	b	24+18+33=75 t	then 1/3 of it is hen 1/3 of75 is 2 then 1/3 is of 93	5,			
				Sect	ion C		
41	С	200 m In same time A covers x metres B covers (x-80) n A & B takes equa Let distance of w of y	netres,(d2) Il time	netres, spe	ed of B (s	1) = y m/sec , spe	ed of A (s2)= 5/3
		x / (5/3) y = (x-80))) y 3x=	=5(x-80)		x=200 n	1

	—	20/7 hours						
42	b	Pipe A can fill in 1 hour = 1/4 part of tank						
		Pipe B can fill in 1 hour = $1/5$ part of tank						
		Pipe B can empty in 1 hour = $1/10$ part of tank						
		(A+B-C) in 1 hour=(1/4 +1/5-1/10) part=7/20 part						
		total time to fill tank= 20/7 hours						
43	с	-7+6x						
	-	$C(x)=10x-7x^2+3x^3$						
		$AC = C(x) / x = 10-7x+3x^2$						
		MAC = d(AC)/dx = -7 + 6x						
4.4	+	0.0902 $P(X=r) = e^{-\lambda} \cdot \lambda^r / r$ I						
44	C	$P(X=1) = e^{-\lambda} \cdot \lambda^1 / 1 i \qquad P(X=2) = e^{-\lambda} \cdot \lambda^2 / 2 i$						
		P(X=1) = P(X=2) $e^{-\lambda} \cdot \lambda^{1}/1 = e^{-\lambda} \cdot \lambda^{2}/2i$, then solving for λ , $\lambda=2$						
		$P(X=4) = e^{-2}.2^4 / 4 I = 0.1353 x 16 / 24 = 0.0902$						
45	b	618						
45	U	μ =30, sigma =10, Z=(X-30)/10, where X = marks obtained P (X less than 33)= P(Z less than (33-30)/10)						
		=P (Zlessthan0.3)						
		=F (0.3) =0.6179 using table Number of students (X less than 33)						
		=1000 x .6179 =617.9 i.e 618						
46	a	$\begin{pmatrix} 0.1 & 0.4 \\ 0.55 & 0.2 \end{pmatrix}$						
		$A = \begin{bmatrix} a11 & a12 \\ a21 & a22 \end{bmatrix} \qquad a_{ij} = x_{ij}/x_i$						
47	a	$\begin{bmatrix} 240\\ 140 \end{bmatrix}$						
ч, 								
48	с	$\begin{pmatrix} 0.9 & -0.4 \\ -0.55 & 0.8 \end{pmatrix}$						
49	a	$1/0.5 \begin{pmatrix} 0.8 & 0.4 \\ 0.55 & 0.9 \end{pmatrix}$						
т <i>у</i>	Lu Lu	(I-A) ⁻¹ = (1/ I-A) (adj (I-A)						
5	с	X=496, Y=516 X = $(I-A)^{-1}D$						
0		$ \begin{array}{c} X = (11)^{-1} \\ X = 1/0.5 \begin{pmatrix} 0.8 & 0.4 \\ 0.55 & 0.9 \end{pmatrix} \begin{pmatrix} 240 \\ 140 \end{pmatrix} = \begin{pmatrix} 496 \\ 516 \end{pmatrix} $						
		<u> </u>						
		62						

Sample Question Paper-5 CLASS: XII Session: 2021-22 Applied Mathematics (Code-241) Term - 1

Time Allowed: 90 minutes

Maximum Marks: 40

General Instructions:

1. This question paper contains three sections – A, B and C. Each part is compulsory.

2. Section - A has 20 MCQs, attempt any 16 out of 20.

3. Section - B has 20 MCQs, attempt any 16 out of 20

4. Section - C has 10 MCQs, attempt any 8 out of 10.

5. There is no internal choice in any section.

6. All Questions carry equal Marks.

			SE	CTION – A					
In th	is section, a	ttempt a	ny 16 ques	stions out o	of Quest	tions 1	- 20.		
Each	Question is	s of 1 ma	rk weighta	ge					
1	Find 5 ⁶ (mo	d 4).							1
	(a)1	((b) 2	(c) 3	3		(d) 4		
2	What time v	vill it be af	fter 1250 hou	urs, If the pre	esent tin	ne is 9:00) pm?		1
	(a)10:00 pn	n ((b) 11 pm	(c) 10:00 a	am (d)	11:00 an	n		
3	out and rep	laced wit	h water. This	From this co s process wa he container	s repeat	ed furthe			1
	a) 9Lt	ł	o) 19Lt	c)	29LT	ı	d) 39Lt		
4			-	ıd 25 km dov he current (i			ours each		1
	a)	4	b) 3		c)	2	d) 1	
5	-31 mod 7 ,i	s equal to							1
	a)	4	b) -3	c) 0		d) 3			
6	For Matrice	$s A(3 \times 3)$	and B(3×3), the value o	of (AB)'	=			1
	a) B'+A	ź ł	o) B'A'	c)	A' B'		d) A'+ B	i'	
7	If A is a squa	are matrix	of order 3 a	nd $ A = -3$, t	hen ad	<i>j</i> (A) is e	qual to		1
	a)	4	b) 3	c)	9		d) 1		

0	[-2 3]		1
8	Find k, if $A = \begin{bmatrix} -2 & 3 \\ k & 4 \end{bmatrix}$ is a singular matrix		I
	a) 5/3 b) 8/3 c) -5/3	d) -8/3	
9	A toy manufacturing firm assesses its variable co	ost to be 'x' times the sum of	1
	30 and 'x', where 'x' is the number of toys	-	
	incurred on storage is Rs1500 Find the to		
	marginal cost when 20 toys are produced		
	a) 70 b) 30 c) 90	d) 10	
10	Slope of the normal at a point (2,6) to the curve	$\mathbf{y} = \mathbf{x}^3 - \mathbf{x}$	1
	a) -2/11 b) -1/11 c)	1/11 d) 2/11	
11	What is minimum value of function $f(x) = 9x^2 + 1$	2x + 2	1
	a) -4 b)-3 c)	-2 d) -1	
12	In a binomial distribution having 'n' number of B	ernoulli trials where p	1
	denotes the probability of success and q d	_	
	failure then Variance =		
	a) n/pq b) np/q c)	n+p+q d) npq	
13	If a fair coin is tossed 9 times, find the probability	y of exactly five tails	1
		-	
	a) 63/256 b) 64/256 c)	10/250 uj 30/250	
14	In a poisson distribution, if mean is 2, what is the	e variance?	1
	(a) 1 b) 2 c) 3 d) 4		
15	Given that mean of a normal variate X is 12 and s find the Z-Score of data point 20	standard deviation is 4, then	1
	a) 4 b) 3	c) 2 d) 1	
16	Given that the scores of a set of candidates on an	IQ test are normally	1
16	distributed. If the IQ test has a mean of 10	00 and a standard deviation	1
16	distributed. If the IQ test has a mean of 10 of 10, what is the probability that a candid	00 and a standard deviation	1
16	distributed. If the IQ test has a mean of 10	00 and a standard deviation	1
16	distributed. If the IQ test has a mean of 10 of 10, what is the probability that a candid	00 and a standard deviation	1
16	distributed. If the IQ test has a mean of 10 of 10, what is the probability that a candio score between 90 and 110	00 and a standard deviation date who takes the test will	1

18	In Paasche's price index number v	veight is considered as	1
	a) Quantity in base year	b) Quantity in current year	
	c) Prices in base year	d) Prices in current year	
19	Which index number is called as i	deal index number	1
	a) Laspeyres	b) Paasches	
	c) Fishers	d) None of the above	
20	Cost of living at two different citie	s can be compared with the help of:	1
	a) Value index	b) Un-weighted index	
	c) Volume index	d) Consumer price index	
	<u>SE</u>	<u>CTION – B</u>	
~ ~	ark weightage.		
21		nal point in 56 seconds and B reaches in 70 as A beat B?	1
	In a 1000 m race, A reaches the fi	es A beat B?	1
	In a 1000 m race, A reaches the fi seconds. By how much distance doe (a) 100 m (b) 120 m	es A beat B?	1
21	In a 1000 m race, A reaches the fi seconds. By how much distance doe (a) 100 m (b) 120 m It is currently 12:00 Noon, What	es A beat B? (c) 150 m (d) 200 m time (in A.M. or P.M.) will be in next 500	
21	In a 1000 m race, A reaches the fi seconds. By how much distance doe (a) 100 m (b) 120 m It is currently 12:00 Noon, What hours? (a) 8:00 AM (b) 8:00PM A, B and C enter into partnership increases his share by50%. If the then find B's share in the profit.	es A beat B? (c) 150 m (d) 200 m time (in A.M. or P.M.) will be in next 500 (c) 4:00 AM (d) 4:00 PM p in the ratio $\frac{7}{2}:\frac{4}{3}:\frac{6}{5}$. After 4 months A total profit at the end of a year is `21600,	
21	In a 1000 m race, A reaches the fi seconds. By how much distance doe (a) 100 m (b) 120 m It is currently 12:00 Noon, What hours? (a) 8:00 AM (b) 8:00PM A, B and C enter into partnership increases his share by50%. If the then find B's share in the profit. (a) Rs 4000 (b) Rs 50 The cost price of type I rice is `60 both types of rice are mixed in the per kg of the mixed rice.	(c) 150 m (d) 200 m (c) 150 m (d) 200 m time (in A.M. or P.M.) will be in next 500 (c) 4:00 AM (d) 4:00PM p in the ratio $\frac{7}{2}:\frac{4}{3}:\frac{6}{5}$. After 4 months A total profit at the end of a year is `21600, 00 (c) Rs 4500 (d) Rs 5500 D per kg and that of type II is `80 per kg. If e ratio 2 : 3 respectively, then find the price	1
21 22 23	In a 1000 m race, A reaches the fi seconds. By how much distance doe (a) 100 m (b) 120 m It is currently 12:00 Noon, What hours? (a) 8:00 AM (b) 8:00PM A, B and C enter into partnership increases his share by50%. If the then find B's share in the profit. (a) Rs 4000 (b) Rs 50 The cost price of type I rice is `60 both types of rice are mixed in the per kg of the mixed rice. (a) Rs 75 (b) Rs 72 Pipe A can fill the tank 2 times	(c) 150 m (d) 200 m (c) 150 m (d) 200 m time (in A.M. or P.M.) will be in next 500 (c) 4:00 AM (d) 4:00PM (c) 4:00 AM (d) 4:00PM p in the ratio $\frac{7}{2}:\frac{4}{3}:\frac{6}{5}$. After 4 months A total profit at the end of a year is `21600, 00 (c) Rs 4500 (d) Rs 5500 0 per kg and that of type II is `80 per kg. If e ratio 2 : 3 respectively, then find the price (c) Rs. 73 (d) Rs 74 faster than pipe B. If both pipes A and B	1
21 22 23 24	In a 1000 m race, A reaches the fi seconds. By how much distance doe (a) 100 m (b) 120 m It is currently 12:00 Noon, What hours? (a) 8:00 AM (b) 8:00PM A, B and C enter into partnership increases his share by50%. If the then find B's share in the profit. (a) Rs 4000 (b) Rs 50 The cost price of type I rice is `60 both types of rice are mixed in the per kg of the mixed rice. (a) Rs 75 (b) Rs 72 Pipe A can fill the tank 2 times	(c) 150 m (d) 200 m (c) 150 m (d) 200 m time (in A.M. or P.M.) will be in next 500 (c) 4:00 AM (d) 4:00PM (c) 4:00 AM (d) 4:00PM p in the ratio $\frac{7}{2}:\frac{4}{3}:\frac{6}{5}$. After 4 months A total profit at the end of a year is `21600, (c) Rs 4500 (d) Rs 5500 D per kg and that of type II is `80 per kg. If e ratio 2 : 3 respectively, then find the price (c) Rs. 73 (d) Rs 74	1 1 1

26		
	If $A = \begin{bmatrix} 1 & 2a \\ -8 & b+1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -6 \\ -8 & 13 \end{bmatrix}$. If A and B are equal matrices, find the values of a and b .	1
	(a) $a = 3, b = 12$ (b) $a = 3, b = -12$ (c) $a = -3, b = 12$ (b) $a = 3, b = -12$ (c) $a = -3, b = -12$	
27	In which of the technology matrix, Hawkins- Simon conditions are satisfied (a) $\begin{bmatrix} 0.3 & 0.4 \\ 0.7 & 1.4 \end{bmatrix}$ (b) $\begin{bmatrix} 0.1 & 0.5 \\ 0.8 & 1.2 \end{bmatrix}$ (c) $\begin{bmatrix} 1.03 & 0.6 \\ 0.3 & 1.5 \end{bmatrix}$ (d) $\begin{bmatrix} 0.5 & 0.4 \\ 0.1 & 0.6 \end{bmatrix}$	1
28	The function $f(x) = x $ is (a) differentiable at $x = 0$ (b) differentiable everywhere (c) differentiable everywhere except at $x = 0$ (d) none of the above	1
29	If $x = t^2$ and $y = t^3$, then $\frac{d^2 y}{dx^2}$ is equal to (a) $\frac{3}{2}$ (b) $\frac{3}{4t}$ (c) $\frac{3}{2t}$ (d) $\frac{3}{4}$	1
30	The price per unit of a commodity produced by a company is given by $p = 30 - 2x$ and 'x' is the quantity demanded. Find the marginal revenue,when 5 commodities are in demand (or produced).(a) Rs 10(b) Rs 12(c) Rs 50(d) Rs 26	1
31	What is the mean of the numbers obtained on throwing a die having written 1 on three faces, 2 on two faces and 5 on one face?(a) 6(b) 12(c) 2(d) 4	1
	(u) 0 (b) 12 (c) 2 (u) 4	
32	In a manufacturing unit inspection, from a lot of 20 baskets which include 6 defectives, a sample of 2 baskets is drawn at random with replacement, then Var(X) for the random variable X (where X=Number of defective baskets)is	1
	(a) 0.32 (b) 0.42 (c) 0.84 (d) 0.12	
33	The monthly salaries of workers in a certain factory are normally distributed. The mean salary is Rs 4000 and standard deviation is Rs 450. If 668 workers	1
	are getting salary less than Rs 3325, find the total number of workers in the factory.	
	are getting salary less than Rs 3325, find the total number of workers in the	
34	are getting salary less than Rs 3325, find the total number of workers in the factory. (a) 12000 (b) 11000 (c) 10000 (d) 13000	1

35	At a telephone of enquiry follow F minute time int	oisson distribut	tion with an ave		calls during 10-	
	during a 10-min	-	-	nere is ut most	one phone cun	
		(b) $\frac{6}{5}$		$(d)^{\frac{6}{-}}$		
	55	5	e^5	⁽¹⁾ 5 ^e		
36	If Laspeyre inde index number is		0, Passche's ind	dex number = 9	00, then Fisher's	1
	(a) 90	(b) 120	(c)	140 (0	d) 160	
37	The price and qu	uantity of group	o of commoditie	s is given in the f	following table:	1
	Commodity	Pri	ce	Quan	itity	
		2008	2012	2008	2012	
		(P_0)	(P_1)	(Q_0)	(Q_1)	
	Rice	10	13	4	6	
	Wheat	15	18	7	8	
	Rent	25	29	5	9	
	Fuel	11	14	8	10	
	Fisher's price in (a) 120.1	idex number fo (b) 121			(d) 122.1	
38		(b) 121 shows the data nal Power Statio	l.1 (c) on energy const on, in Delhi regi) 121.2 (umption and exp on. Find an aggr	enditure at regative price	1
38	(a) 120.1 Following table Badarpur Thern index for the ene	(b) 121 shows the data nal Power Statio ergy expenditur	l.1 (c) on energy const on, in Delhi regi es in year 2015) 121.2 (umption and exp on. Find an aggr using Laspeyres	enditure at regative price ' index number.	1
38	(a) 120.1 Following table Badarpur Thern	(b) 121 shows the data nal Power Statio ergy expenditur Qua	l.1 (c) on energy const on, in Delhi regi) 121.2 (umption and exp on. Find an aggr using Laspeyres Unit	enditure at regative price	1
38	(a) 120.1 Following table Badarpur Thern index for the ene	(b) 121 shows the data nal Power Statio ergy expenditur Qua (weig Year 1987	I.1 (c) on energy const on, in Delhi regi es in year 2015 ntity ghts) Year 2015) 121.2 (umption and exp on. Find an aggr using Laspeyres Unit (Rs / Year 1987	enditure at egative price i' index number. Price (kwh) Year 2015	1
38	(a) 120.1 Following table Badarpur Thern index for the ene Sector Commercial	(b) 121 shows the data nal Power Statio ergy expenditur Qua (weig Year 1987 5416	I.1 (c) on energy const on, in Delhi regi es in year 2015 ntity ghts) Year 2015 6015) 121.2 (umption and exp on. Find an aggr using Laspeyres Unit (Rs / Year 1987 1.97	eenditure at regative price ' index number. Price (kwh) Year 2015 10.92	
38	(a) 120.1 Following table Badarpur Thern index for the energy Sector Commercial Residential	(b) 121 shows the data nal Power Statio ergy expenditur Qua (weig Year 1987 5416 15293	1.1 (c) on energy const on, in Delhi regi es in year 2015 ntity ghts) Year 2015 6015 20262) 121.2 (umption and exp on. Find an aggr using Laspeyres Unit (Rs / Year 1987 1.97 2.32	enditure at regative price s' index number. Price (kwh) Year 2015 10.92 6.16	
38	(a) 120.1 Following table Badarpur Thern index for the ene Sector Commercial	(b) 121 shows the data nal Power Statio ergy expenditur Qua (weig Year 1987 5416	I.1 (c) on energy const on, in Delhi regi es in year 2015 ntity ghts) Year 2015 6015) 121.2 (umption and exp on. Find an aggr using Laspeyres Unit (Rs / Year 1987 1.97	eenditure at regative price ' index number. Price (kwh) Year 2015 10.92	
38	(a) 120.1 Following table Badarpur Therm index for the energy Sector Commercial Residential Industrial Agriculture	(b) 121 shows the data nal Power Static ergy expenditur Quan (weig Year 1987 5416 15293 21287 9473	1.1 (c) on energy const on, in Delhi regi es in year 2015 ntity ghts) Year 2015 6015 20262 17832 8804) 121.2 (umption and exp on. Find an aggr using Laspeyres Unit (Rs / Year 1987 1.97 2.32 0.79 2.25	enditure at regative price s' index number. Price (kwh) <u>Year 2015</u> 10.92 6.16 5.13 8.10	
38	(a) 120.1 Following table Badarpur Thern index for the ene Sector Commercial Residential Industrial	(b) 121 shows the data nal Power Statio ergy expenditur Qua (wei Year 1987 5416 15293 21287 9473 (b) 4	1.1 (c) on energy const on, in Delhi regi es in year 2015 ntity ghts) Year 2015 6015 20262 17832 8804 401 (a) 121.2 (umption and exp on. Find an aggr using Laspeyres Unit (Rs / Year 1987 1.97 2.32 0.79 2.25 c) 402 (d	enditure at regative price ' index number. Price kwh) Year 2015 10.92 6.16 5.13 8.10	
	(a) 120.1 Following table Badarpur Thern index for the ene Sector Commercial Residential Industrial Agriculture (a) 403	(b) 121 shows the data nal Power Statio ergy expenditure Qua (weig Year 1987 5416 15293 21287 9473 (b) 4 lowing index n	1.1 (c) on energy const on, in Delhi regi es in year 2015 ntity ghts) Year 2015 6015 20262 17832 8804 401 (a) 121.2 (umption and exp on. Find an aggr using Laspeyres Unit (Rs / Year 1987 1.97 2.32 0.79 2.25 c) 402 (d	enditure at regative price ' index number. Price kwh) Year 2015 10.92 6.16 5.13 8.10	
	(a) 120.1 Following table Badarpur Thern index for the energy Sector Commercial Residential Industrial Agriculture (a) 403 Which of the fol	(b) 121 shows the data nal Power Static ergy expenditure Quar (weig Year 1987 5416 15293 21287 9473 (b) 4 lowing index n	1.1 (c) on energy const on, in Delhi regi es in year 2015 ntity ghts) Year 2015 6015 20262 17832 8804 401 (c) umber satisfy t) 121.2 (umption and exp on. Find an aggr using Laspeyres Unit (Rs / Year 1987 1.97 2.32 0.79 2.25 c) 402 (d) he time reversa	enditure at regative price ' index number. Price kwh) Year 2015 10.92 6.16 5.13 8.10	
	(a) 120.1 Following table Badarpur Therm index for the energy Sector Commercial Residential Industrial Agriculture (a) 403 Which of the fol a) Laspeyre's	(b) 121 shows the data nal Power Statio ergy expenditure Qua (weig Year 1987 5416 15293 21287 9473 (b) 4 lowing index n b) d)	I.1 (c) on energy const on, in Delhi regi es in year 2015 ntity ghts) Year 2015 6015 20262 17832 8804 401 (umber satisfy t Paasche's None of the ab) 121.2 (umption and exp on. Find an aggr using Laspeyres Unit (Rs / Year 1987 1.97 2.32 0.79 2.25 c) 402 (d he time reversat	enditure at regative price ' index number. Price kwh) Year 2015 10.92 6.16 5.13 8.10	

	SECTION – C In this section, attempt any 8 questions out of 10 Questions. Each question is of 1 mark weightage. (Questions 46-50 are based on a Case-Study).	
41	A retailer has 250 kg of rice, a part of which he sells at 10% profit. The remaining quantity of rice is of low quality and he sold it at 5% loss. Overall he made a profit of 7%. Find the quantity of rice sold at 5% loss	1
	a) 50 kg b) 40kg c) 70kg d) 10 kg	
42	A person can row a boat at a speed of 5 km / hour in still water. It takes himthrice as long to row upstream as to row downstream. Find the rate at whichthe stream is flowing in km/hra)4b)2.5c)2d)1.5	1
43	In a 1000 metres race, A defeats B by 100 metres and B defeats C by 100 metres. In same race by how many metres will A defeat C?	1
	a)100 b) 150 c) 200 d) 190	
44	A traffic engineer records the number of bicycle riders that use a particular cycle track. He records that an average of 3.2 bicycle riders use the cycle track every hour. Given that the number of bicycles that use the cycle track follow a Poisson distribution, what is the probability that: 2 or less bicycle riders will use the cycle track within an hour?	1
	a) 0.011 b) 0.021 c) 0.031 d) 0.381	
45	For Binomial distribution B $(4, 2/3)$, the value of variance is	1
	a) 0.89 b) 090 c) 0.91 d) 0.99	
	Case study	
	The economy of a state is composed of various sectors. To understand the basic concept, we consider two sectors coal mining (sector 1) and utilities (sector 2). The coal mining produces coal and utilities produces electricity. Assume that these products are measured by their rupee value. By one unit of product we mean 1 rupee worth of that product. To produce Re1 worth of coal the coal mining sector uses Rs0.50 of coal and Rs0.10 of electricity. To produce Re1 worth of electricity the utilities sector uses Rs0.25 of coal and Rs0.25 of	

Г

46	Based on the above information, answer the following questions:	1
	The technology coefficient matrix A is (a) $\begin{bmatrix} 0.50 & 0.10 \\ 0.25 & 0.25 \end{bmatrix}$ (b) $\begin{bmatrix} 0.50 & 0.25 \\ 0.10 & 0.25 \end{bmatrix}$	
	$(c) \begin{bmatrix} 0.25 & 0.25 \\ 0.50 & 0.10 \end{bmatrix} \qquad (d) \begin{bmatrix} 0.10 & 0.50 \\ 0.25 & 0.25 \end{bmatrix}$	
47	The matrix $(I - A)^{-1}$ is $(a) \frac{1}{8} \begin{bmatrix} 15 & 5\\ 2 & 10 \end{bmatrix}$ $(b) \frac{1}{7} \begin{bmatrix} 15 & 2\\ 5 & 10 \end{bmatrix}$	1
	$(c) \frac{1}{7} \begin{bmatrix} 15 & 5\\ 2 & 10 \end{bmatrix} \qquad (d) \frac{20}{7} \begin{bmatrix} 0.75 & 0.25\\ 0.50 & 0.10 \end{bmatrix}$	
48	The system is viable because (a) $ I-A >0$ and diagonal elements of $(I-A) < 0$ (b) $ I-A >0$ and diagonal elements of $(I-A) > 0$ (c) $ I-A <0$ and diagonal elements of $(I-A) > 0$ (d) $ I-A <0$ and diagonal elements of $(I-A) < 0$	1
49	If there is external demand worth ₹7000 of coal and ₹14000 of electricity, th production of two sectors to meet the demand is (a) Rs 25000 of coal, Rs 22000 of electricity (b) Rs 12000 of coal, Rs 20000 of electricity (c) Rs 15000 of coal, Rs 22000 of electricity (d) Rs 27000 of coal, Rs 22000 of electricity	ien 1
50	 (a) Rs 25000 of coal, Rs 22000 of electricity (a) Rs 25000 of coal, Rs 22000 of electricity (b) Rs 22000 of coal, Rs 15000 of electricity (c) Rs 20000 of coal, Rs 10000 of electricity (d) Rs 18000 of coal, Rs 8000 of electricity 	1

		Section-A
1	а	$5 \equiv 1 \pmod{4} = 1$ $5^6 \equiv 1^6 \pmod{4}$ (Using property 5) Hence, $5^6 \pmod{4} = 1$
2	b	Number of hours in a day = 24 hours 1250 (mod 24) = 2 (as 1250 hours = 52 days + 2 hours) Therefore, it will be 11:00 pm after 1250 hours
3	C	Total milk in container = 40 l Milk taken out = 4 l No. of times process repeated = 3 Milk contained by the container now = $X(1 - \frac{Y}{X})^n$ unit where x is total quantity, y is quantity removed, n is no. of times operation repeated. = I.e. 4 $40(1 - \frac{3}{40})^3$ = 29 lit approx.
4	d	Let the speed of the boat in still water be x km/hr and the speed of the current be y km/hr then (x+y) × 5 = 25 and (x-y) × 5 = 15 (Distance = Speed x Time) x + y = 5 and x - y = 3 On solving we get, x = 4 and y = 1 Thus, speed of the current is 1 km/hr
5	а	-31=7×(-5)+4
6	b	
7	C	$ adj(A) = A ^{n-1}$ (n=order of matrix) (-3) ² =9
8	d	$A = \begin{bmatrix} -2 & 3 \\ k & 4 \end{bmatrix}$ For singular matrix A =0 -8-3k=0 K=-8/3
9	a	AThe total cost function C(x) is given by, $C(x) = x (x + 30) + 1500 = x^2 + 30x + 1500$ The marginal cost MC is given by $c' = 2x + 30$ Marginal cost of producing 20 toys is $2(20)+30$ The marginal cost of producing 20 toys is Rs 70

10	b	$y' = 3x^2 - 1$
		Slope= $3(2)^2 - 1 = 11$
		Slop of normal=-1/11
11	С	$9x^2 + 12x + 2$
		$= (3x + 2)^2 - 2$ so minimum value is -2
12	d	Variance =npq
13	а	Repeated tosses of a fair coin qualify as Bernoulli's trails
		Let X denote the number of tails in an experiment of 9 such trials and hence is the binomial distribution
		Here, $n = 9$, $p = \frac{1}{2}$ and $q = 1 - p = \frac{1}{2}$
		As P ('r' successes) = $C_r^n p^r q^{n-r} = \frac{n!}{r!(n-r)!} p^r q^{n-r}$
		Probability of exact 5 successes in 9 trials = P(X = 5) = $C_5^9 p^5 q^{9-5}$
		$=\frac{9!}{5!(9-5)!}\cdot (\frac{1}{2})^{5}\cdot (\frac{1}{2})^{5-5}$
		$=\frac{9!}{5!(9-5)!}\cdot(\frac{1}{2})^9$
		$=\frac{63}{256}$
		220
14	b	
15	С	$Z = \frac{x - \mu}{\sigma}$
		$Z = \frac{20 - 12}{4} = 2$
16	d	P(90 < X < 110) = P(X < 110) - P(X < 90)
		P(90 < X < 110) = P(-1 < Z < 1) = P(Z < 1) - P(Z < -1)
		= 0.8413 - 0.1587 = 0.6826
17	а	100
18	b	Quantity in current year
19	С	Fisher
20	d	Consumer price index
	1	Section-B
21	D	Since A is faster by 14 secs.
		Therefore, he beats B by= $\frac{1000}{70} \times 14 = 200 m$
22	а	we find 500 (mod 24)
		71

		$500 = 24 \times 20 + 20$, so $500 \equiv 20 \pmod{24}$ 500 hours is equivalent to 20 hours. Hence, it will be 8:00 A.M. in next 500 hours
23	А	Given, ratio of A, B and C's investment = $\frac{7}{2}$: $\frac{4}{3}$: $\frac{6}{3}$
		= 105 : 40 : 36
		Let the initial investment of A, B and C be ` $105x$, ` $40x$ and ` $36x$ respectively.
		A increases his share by 50% after 4 months,
		∴ A's share of profit : B's share profit : C's share of profit
		$= (105x \times 4 + 105x \times 8) : 40x \times 12 : 36x \times 12$
		= 1680x : 480x : 432x
		=35:10:9
		Hence, B's share of profit = $\frac{10}{54} \times 21600 = 4000$
24	В	$\frac{2}{3} = \frac{80-m}{m-60} \implies 2m - 120 = 240 - 3m \implies 5m = 360$
		$\Rightarrow m = 72$
25	D	$\frac{1}{x} + \frac{2}{x} = \frac{1}{24} \Rightarrow x = 72$
26	С	$2a = -6 \implies a = -3 \text{ and } b + 1 = 13 \implies b = 12$
27	D	I - A = 0.16 > 0 and main diagonal of $(I - A)$ is positive.
28	С	
20	U	
29	В	$\frac{dy}{dx} = \frac{3t}{2}, \ \frac{d^2y}{dx^2} = \frac{3}{2}\frac{dt}{dx} = \frac{3}{4t}$
30	A	$R = px = (30 - 2x)x = 30x - 2x^{2}$ The marginal revenue $\frac{dR}{dx} = 30 - 4x$ The marginal revenue of producing 5 commodities is $30 - 4 \times 5 = 10$
31	С	$P(1) = \frac{3}{6} = \frac{1}{2}, P(2) = \frac{2}{6} = \frac{1}{3}, P(5) = \frac{1}{6}$ $\Sigma p_i x_i = \frac{1}{2} \times 1 + 3 \times 2 + 6 \times 5 = 6 = 2$
		72

3	2	В	X = 0, 1 and 2, n = 2 If drawing a defective basket is considered a success, then $p = \frac{6}{20}$
			3, $q = 1 - \frac{3}{10} = \frac{7}{10}$, $Var(X) = npq = 2 \times \frac{3}{10} \times \frac{7}{10} = 0.42$
	2		X = 4000
3	3	C	$Z = \frac{X - 4000}{450}$,
			$P(X < 3325) = P\left(Z < \frac{3325 - 4000}{450}\right)$
			= P(Z < -1.5) = F(-1.5) = 1 - F(1.5) = 1 - 0.9332 = 0.0668
			According to given $0.0668 \times n = 668 \implies n = 10000$
3	4	А	$p = \frac{1}{6}, q = \frac{5}{6}, n = 10$
			Required probability = $P(\text{knocking down less than 2 hurdles}) = P(0) + P(1)$
			$= C_0^n q^{10} + C_1^n p q^9 = (q+10p)q^9 = \left(\frac{5}{6} + 10 \times \frac{1}{6}\right) \times \left(\frac{5}{6}\right)^9$
			$=\frac{5^{10}}{2\times 6^9}$
3	5	C	m=5, P(x = 0,1) = $e^{-5}\frac{5^{0}}{10} + e^{-5}\frac{5^{1}}{11} = e^{-5}(1+5) = \frac{6}{e^{5}}$
3	6	В	Fisher's index number = $\sqrt{L.I \times P.I} = \sqrt{160 \times 90} = 120$
	0	D	$1131101 \times 11000 \times 1000 \times 1000 \times 10000 \times 100000000$
3	7	В	$\Sigma P_0 Q_0 = 359, \ \Sigma P_0 Q_1 = 515, \ \Sigma P_1 Q_0 = 435, \ \Sigma P_1 Q_1 = 623$
			Fishers index number = $\sqrt{\frac{435}{359} \times \frac{623}{515} \times 100} = 121.2$
			$\sqrt{359}$ $\sqrt{515}$ $\sqrt{100}$ 121.2
3	8	А	Laspeyres' index number
			$10.92 \times 5416 + 6.16 \times 15293 + 5.13 \times 21287 + 8.10 \times 9473$
			$I_{2015} = \frac{10.92 \times 5416 + 6.16 \times 15293 + 5.13 \times 21287 + 8.10 \times 9473}{1.97 \times 5416 + 2.32 \times 15293 + 0.97 \times 21287 + 2.25 \times 9473} \times 100$
			=403
3	9	С	- 105
	-0	a	
	U	a	
	1	l	
41	а		
42	b	Let the rate a	at which the stream is flowing be x km/hr and let the distance covered by the
			n. According to the question
		$\frac{3y}{5+x} = \frac{y}{5-x}$	
		$\Rightarrow 3(5-x)$	
		$\Rightarrow 15 - 3x =$ $\Rightarrow 4x = 10^{\circ}$	5+x x = 2.5 The stream is flowing at the rate of 2.5 km/h
43	d	$\rightarrow 4x = 10$ A:B:C=1000:	

4.4									
44	d	For this problem, $E(X) = Van$	$r(X) = \lambda = 3.2$						
	The goal is to find $P(X \le 2)$								
	As $P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}$								
	$\Rightarrow P(X = 0) = \frac{3.2^{\circ} e^{-5.2}}{0!} = \frac{1}{e^{5.2}} = 0.041$								
	$P(X = 1) = \frac{3.2^{1}e^{-3.2}}{11} = \frac{3.2}{e^{3.2}} = 0.13$								
		$P(X = 2) = \frac{3.2^{2}e^{-5.2}}{2!} = \frac{5.12}{e^{3.2}}$							
		50 51 4 40 37 - 077		P(X = 2) = 0.041 + 0.13 + 0.21 = 0.381					
45	а	Variance =npq		. ((,) = 0.011 - 0.001					
		4	$x_{3}^{2}x_{3}^{1}=8/9=0.89$						
46	b		gy matrix a _{ij} , represei	nts units of sector i to produce 1 unit of					
47	С	sector j							
48	b	system is viable if $ I - a > 0$	and $1 - a_{11} > 0, 1 - a_{11} > 0$	$a_{22} > 0$					
49 50	a d	$\frac{X=(I-A)^{-1}D}{\text{Internal consumption} = \text{total}}$	production – external	demand=X-D					
		Numbers, Quantific	ation and Num	erical Applications					
			MCQ's (1 to 20):	••					
1. (49 -	+ 57)(mod 50) is							
((a) -	4 (<i>b</i>) 5	(<i>c</i>) 6	(<i>d</i>) 7.					
2. (15 -	– 53)(mod 4) is							
((a)	1 (<i>b</i>) 2	(c) 3	(d)					
~ ~	3. (18 × 10)(mod 7) is								
3. ((<i>d</i>) 4.					
	(a)	5 (b) 4	(c) 3	(d) 4. (d) 2.					
((a)		(c) 3						
(4. ((a) [(3 (a)	× 7) + 5](mod 4) is 5 (b) 4	(c) 3 (c) 3						
(4. ((a) [(3 (a)	5 (b) 4 × 7) + 5](mod 4) is 5 (b) 4 × 5)(mod 7) is		(<i>d</i>) 2.					
(4. (5. ((a) [(3)(a)] (-6)(a)	× 7) + 5](mod 4) is 5 (b) 4		(<i>d</i>) 2.					
(4. 5. (6. ((a) [(3)(a)(-6)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)	(x 7) + 5] (mod 4) is (b) 4 (x 5) (mod 7) is (b) 5	(c) 3 (c) -5	(<i>d</i>) 2. (<i>d</i>) 2.					

		(c) 2:10 re	(d) 25:70 .
(a) {4, 11, 18, } 9. $\sigma(15)$ is equal to	(<i>b</i>) {11, 18, 25, }	(c) {4, 8, 12, }	$(d) \{1, 8, 15,\}$.
(a) 8 10. $\omega(32)$ is equal to	(<i>b</i>) 24	(c) 4	(d) 16 .
(<i>a</i>) 1 11. $\Omega(32)$ is equal to	(<i>b</i>) 3	(c) 5	(<i>d</i>) 7 .
(a) 1	(<i>b</i>) 3	(<i>c</i>) 5	(<i>d</i>) 7 .
12. Three types of wh	leat costing Rs 18 pe	r kg, Rs 20 per kg and R	s 25 per kg are mixed together.
If mixed variety is	sold at Rs 22 per kg	, the in which these of v	vheat should be mixed
respectively is			
(a) 1: 2: 3 13. In what ratio mus		(c) 2:3:1 arieties pulses costing R	(<i>d</i>) 1: 1: 2 . Is 85 per kg and Rs 100 per kg
respectively so as	to get a mixture wo	rth Rs 92 per kg?	
(a) 7:8 14. In what ratio mus	(b) 8:7 t water be mixed wit		(d) 7:5. I selling the mixture at cost
price?			
(a) 1:6 15. Milk and water in	(<i>b</i>) 6: 1 two vessels A and B	(c) 3:2 are in the ratio 5:3 and	(d) 2:3 . 5:4 respectively. In what ratio
the liquid of both t	the vessels be mixed	to obtain a new mixture	e in which milk and water is 7:5
respectively?			
(a) 3:2 16. A jar full of whisk	(b) 3:5 y contains 40% alcol		(d) 2:5 . y is replaced by another
containing 19% al	cohol and now perce	entage of alcohol is foun	d to be 26%. The quantity of
whisky replaced is	3		
5	5	(c) $\frac{2}{5}$ part of which he sells at 8%	(d) $\frac{3}{5}$ part. profit and rest at 18% profit.
He gains 14% on	the whole. The quan	tity sold at 18% profit is	5
		(c) 560 kg and the speed of the cu	(d) 640 kg . Irrent is 2.5 km/h. The boy's
speed against the	cuurent is		
		75	

(*a*) 8.5 km/h (*b*) 9 km/h (*c*) 10 km/h (*d*) 12.5 km/h. 19. A boat running downstream covers 16 km in 2 hours while for covering the same distance

upstream it takes 4 hours. What is the speed of the boat in still water?

(*a*) 4 km/h (*b*) 6 km/h (*c*) 8 km/h (*d*) 10 km/h. 20. The speed of a boat in still water is 15 km/h.and the rate of current is 3 km/h. The distance

travelled by boat in 12 minutes is

(a) 1.2 km (b) 1.8 km (c) 2.4 km (d) 3.6 km.

Assertion - Reasoning Questions

DIRECTION: In the following questions, a statement of assertion (A) is followed by a statement of reason (R), mark the correct choice as:

- (a) Both assertion and reason are the true and reason is the correct explanation of assertion.
- (b) Both assertion and reason are true but reason is not the correct explanation of assertion.
- (c) Assertion is true but reason is false.

(d) Assertion is false but reason is true.

21. **Assertion:** The least positive value of *x* such that $71 \equiv x \pmod{8}$ is 7.

Reason: if $a \equiv b \pmod{b}$, then $m \mid (a - b)$.

22. **Assertion:** Today is Tuesday. My uncle will come after 43 days. My uncle will come on Monday.

Reason: since there are 7 days in a week so, we use the method $43 \equiv x \pmod{7}$.

23. **Assertion:** The value of $\tau(80)$ is 10.

Reason: $\omega(n)$ = number of prime divisors of *n*.

- 24. **Assertion:** The highest power of 3 in [1000 is 498. **Reason**: $\sigma(n)$ =sum of divisors of *n*.
- 25. **Assertion:** the value of $\sigma_2(6) = 50$ **Reason**: The value of $\sigma(6) = 12$
- 26. **Assertion:** The value of $\omega(12)$ is 2.
 - **Reason**: $\omega(n)$ = number of prime divisors of *n*.
- 27. **Assertion**: $\phi(5) = 4$ and $\phi(6) = 2$.

Reason: $\phi(n)$ =Number of relatively primes to n and not exceeding to n.

28. Assertion: The highest power of 6 in [245 is 121.Reason: The highest power of 6 in [245 =min (*power of 2, power of 3*).

Case Study based Questions:

29. Today in class mathematics, Mr. Gopal is going to teach about the arithmetic function. He teaches different functions such as $\tau(n)$, $\sigma(n)$, $\omega(n)$, and $\varphi(n)$ to the class. Two students Reena and Meeta told 'sir, please give us a number and we calculate the values of different arithmetic functions for it. Mr. Gopal give the number 9 to Meeta and 12 to Reena.

Now	according to the given infor	mation answ	er the follow	ving questions:				
(i)	$\tau(n)$ denotes to:							
	(a) sum of positive divisors of n.							
	(b) number of positive divisors of n							
	(c) number of coprime numbers of n							
	(d) none of these							
(ii)	The value of $\tau(12)$ is:							
	(a) 6 (b) 3	(c) 4	(d) 5					
(iii)	$\sigma(n)$ denotes:							
	(<i>a</i>) sum of positive divisors	of n.						
	(b) number of positive divis	ors of n						
	(c) number of coprime num	bers of n						
	(d) none of these							
(iv)	the value of $\sigma(9)$ is:							
	(a) 10 (b) 11	(c) 12	(d) 13					
(v)	The value of $\omega(9)$ is:							
	(a) 1 (b) 2	(c) 3	(d) none					
	n a group discussion of mathem							
			=	discussing the congruence modulo				
				sigma function, omega function,				
				ing, they did not agree each other.				
	rding to their understanding re	lated to the to	pic numbers	and quantification, answer the				
	wing questions:	c · · · c		,				
(i)	Ajay says, mathematical forr							
	Binay says, mathematical for							
	Karan says, mathematical fo							
	Dinesh says, mathematical fo	orm of sigma f	function is \sum_{r}	n/d 1				
	Who is correct ?							
	(a) Ajay (b) B			d) Dinesh				
(ii)	Ajay says, mathematical forr		,					
	Binay says, mathematical for							
	Karan says, mathematical fo			1				
	Dinesh says, mathematical fo	orm of divisor	function is ∑	$\sum_{n/d} 1$				
	Who is correct?							
	(a) Ajay (b) B			d) Dinesh				
(iii)	(a) Ajay (b) B Euler's totient function $\phi(n)$	n = n - 1, if an	d only if n is:					
	(a) Ajay(b) BEuler's totient function $\emptyset(n)$ (a) Odd(b) even	n = n - 1, if an (c) prime	d only if n is: (d) odd p	orime				
(iii) (iv)	(a) Ajay(b) BEuler's totient function $\emptyset(n)$ (a) Odd(b) evenLet m be a fixed positive interval	n = n - 1, if an (c) prime eger. Then an i	d only if n is: (d) odd p					
	(a) Ajay (b) B Euler's totient function $\emptyset(n)$ (a) Odd (b) even Let m be a fixed positive intermodulo m, written as $a \equiv b$	n = n - 1, if an (c) prime eger. Then an i (modm), if	d only if n is: (d) odd p integer a is co	orime ongruent to an integer b under				
(iv)	(a) Ajay (b) B Euler's totient function $\phi(n)$ (a) Odd (b) even Let m be a fixed positive intermodulo m, written as $a \equiv b(a)$ (a) $a (m + b)$ (b) $m (a - b)$	n = n - 1, if an (c) prime eger. Then an i (modm), if b) (c) m (b)	$\begin{array}{l} \text{id only if n is:} \\ (d) \text{ odd p} \\ \text{integer a is co} \\ b-a) \qquad (d) \end{array}$	orime ongruent to an integer b under both b and c.				
	(a) Ajay (b) B Euler's totient function $\emptyset(n)$ (a) Odd (b) even Let m be a fixed positive inter- modulo m, written as $a \equiv b($ (a) $a (m + b)$ (b) $m (a - A)$ jay says, congruence modu	n = n - 1, if an (c) prime eger. Then an i (modm), if b) (c) m (k) lo is reflexive	d only if n is: (d) odd p integer a is co b - a) (d) and symmetr	orime ongruent to an integer b under both b and c. ric relation.				
(iv)	(a) Ajay (b) B Euler's totient function $\phi(n)$ (a) Odd (b) even Let m be a fixed positive inter- modulo m, written as $a \equiv b($ (a) $a (m + b)$ (b) $m (a - $ Ajay says, congruence modu Binay says, congruence mod	n = n - 1, if an (c) prime eger. Then an i (modm), if (b) (c) m (b) lo is reflexive ulo is neither	d only if n is: (d) odd p integer a is co b - a) (d) and symmetric reflexive nor	orime ongruent to an integer b under both b and c. ric relation. symmetric relation.				
(iv)	(a) Ajay (b) B Euler's totient function $\emptyset(n)$ (a) Odd (b) even Let m be a fixed positive inter- modulo m, written as $a \equiv b($ (a) $a (m + b)$ (b) $m (a - A)$ Ajay says, congruence modu Binay says, congruence modu Karan says, congruence modu	n = n - 1, if an (c) prime eger. Then an i (modm), if b) (c) m (l) lo is reflexive ulo is neither lulo is an equir	d only if n is: (d) odd p integer a is co b - a) (d) and symmetric reflexive nor valence relat	orime ongruent to an integer b under both b and c. ric relation. symmetric relation.				

Who is correct? (a) Ajay

4. (d) 9. (b) 2. (b) **Answers:** 1. (*c*) 3. (a) 5. (b) 7. (c) 10. (*a*) 6. (a) 8. (a) 9. (b)

(b) Binay (c) Karan (d) Dinesh

11. (c) 12. (d)	13. (b)	14. (a)	15. (c)
16. (b) 17. (b) 21 (a) 22(d)	18. (<i>c</i>) 23(b)	19. (<i>b</i>) 24(b)	20. (<i>d</i>) 25(b)
26(a) 27(a)	28(a)	29 (i)(b)	(ii)(a)
(iii)(a) (iv)(c)	(v)(a)	30 (i)(a)	(ii)(b)
(iii)(c) (iv)(d)	(v)(c)		
-	FROM MAT		
	IED MATEMA		
1. If A is a square matrix such that $(A - 2I)$ (a) $\frac{A-I}{2}$	(b) $\frac{A+I}{2}$	1 A - 1S	
(a) $\frac{1}{2}$ (c) 2 (A – I)	(d) $\frac{1}{2}$		
$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	(u) 2A + 1		
2. If A = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ then A ² + 2A equals			
(a) 4A	(b) 3A		
(c) 2A 3. If $\begin{bmatrix} x+y & 2x+z \\ x-y & 2z+w \end{bmatrix} = \begin{bmatrix} 4 & 7 \\ 0 & 10 \end{bmatrix}$, then	(d) A the values of x	v z and w respect	ivelu are
(a) 2, 2, 3, 4 $[x - y 2z + w] = \begin{bmatrix} 0 & 10 \end{bmatrix}$, then	(b) 2, 3, 1, 2	y, 2 and wrespeet	
(c) 3, 3, 0, 1	(d) None of the	se	
4. If A = $[a_{ij}]$ is a matrix of order 2, where			
(a) [9 25]	(b) $\left[\frac{9}{2}, \frac{25}{2}\right]$		
^(a) [8 18]			
(a) $\begin{bmatrix} 9 & 25 \\ 8 & 18 \end{bmatrix}$ (c) $\begin{bmatrix} 9 & 25 \\ 4 & 9 \end{bmatrix}$	(b) $\begin{bmatrix} \frac{9}{2} & \frac{25}{2} \\ 8 & 18 \end{bmatrix}$ (d) $\begin{bmatrix} \frac{9}{2} & \frac{15}{2} \\ 4 & 0 \end{bmatrix}$		
5. A square matrix A = $[a_{ij}]$ of order n is	[4 9]	iangular matrix if	$a_{ii} = 0$ for
(a) i = j	(b) i < j		
(c) i > j 6. A square matrix A = [<i>a_{ij}</i>] of order n is o	(d) None of the		nr
(a) $i = j$	(b) i < j	$\lim_{i \to i} u_{ij} = 0$	71
(c) $i > j$ (d) $i = j$	≠ j		
7. For any square matrix A, AA ^T is a (a) Unit matrix	(b) symmetric	matrix	
(c) skew-symmetric matrix	(d) diagonal m		
8. If a matrix A is both symmetric and ske			
(a) A is a diagonal matrix (c) A is a scalar matrix	(b) A is zero m (d) A is square		
9.If $A = diag(3, -1)$, then matrix A is			
(a) $\begin{bmatrix} 0 & 3 \\ 0 & -1 \end{bmatrix}$ (b) $\begin{bmatrix} -1 & 0 \\ 3 & 0 \end{bmatrix}$			
$(c) \begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix} \qquad (d) \begin{bmatrix} 3 & -1 \\ 0 & 0 \end{bmatrix}$			
10. Total number of possible matrices of	order 2 × 3 with	each entry 1 or 0	is
(a) 6	(b) 36		
(c) 32	(d) 64		
	78		

11. If A is a square matrix such that $A^2=A$, then $(I + A)^2 - 3A$ is (a) I (b) 2A (c) 3I (d) A 12.If matrices A and B are inverse of each other then (a) AB = BA (b) AB = BA = I(c) AB = BA = 0(d) AB = 0, BA = I13. If A = $\begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$, then A^2 is (a) $\begin{bmatrix} 0 & 4 \\ 4 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 4 \\ 0 & 4 \end{bmatrix}$ 14. If A = $\begin{bmatrix} 5 & x \\ y & 0 \end{bmatrix}$ and A = A' then (a) x = 0, y = 5 (b) x = y (c) x + y = 5(d) x - y = 5(d) x - y = 515. If $A = \begin{bmatrix} 3 & -1 & 2 \\ 4 & 5 & 9 \\ 1 & 3 & 4 \end{bmatrix}$, then the value $3a_{22} - 4a_{33}$ is (d) x - y = 5(b) -1 (a) 1 (c) 0 (d) 2 16. If A = $\begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix}$ then A¹⁶ is (a) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix}$ (b) (c) $\begin{bmatrix} 0 & a \\ a & 0 \end{bmatrix}$ (d) None of these 17. If a matrix A= $\begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$ and f(x) = 1+x+x² + x⁴ + x⁸ + x¹⁶ then f(A) is (a) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (d) None of these 18. If $A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$ and $kA = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$, then the values of k, a and b are respectively (b) -6, 12, 18 (a) -6, -4, -9 (c) -6, -12, -18 (d) -6, 4, 9 19. If the matrix $A = \begin{bmatrix} 0 & a & -3 \\ 2 & 0 & -1 \\ b & 1 & 0 \end{bmatrix}$ is skew symmetric matrix then (b) a = -2, b = 3(a) a = 0, b = 5 (c) a = 2, b = -3(d) None of these 20. If A is matrix of order m × n and B is a matrix such that AB and BA^T are both defined, then order of matrix B is (a) m × m (b) n × n (c) n × m (d) $m \times n$ 21. The matrix A = $\begin{vmatrix} 3 & -2 & 7 \\ -2 & 1 & -3 \\ 7 & -3 & 5 \end{vmatrix}$ is a (a) Symmetric Matrix (b) Skew-Symmetric matrix (d) Scalar Matrix (c)Diagonal Matrix 22. If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$, then $A + A^T = I$ then the value of α is

(a) $\frac{\pi}{6}$ (b) $\frac{\pi}{3}$ (c) π (d) None of these 23. If $A = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ Is such that $A^2 = I$ then (a)1+ $\alpha^2 + \beta \gamma = 0$ (b) $1-\alpha^2+\beta\gamma=0$ (c) $1-\alpha^2-\beta\gamma=0$ (d)1+ $\alpha^2 - \beta \gamma = 0$ 24. The matrix A = $\begin{vmatrix} 0 & -5 & 7 \\ 5 & 0 & 3 \\ -7 & -3 & 0 \end{vmatrix}$ is a (a) Symmetric Matrix (b) Skew-Symmetric matrix (c)Diagonal Matrix (d) Scalar Matrix 25. The matrix A = $\begin{bmatrix} 0 & 0 & 5 \\ 0 & 5 & 0 \\ 5 & 0 & 0 \end{bmatrix}$ is a (a) Scalar matrix (b) Diagonal matrix (c) Unit matrix (d) Square matrix 26. If A and B are 2 × 2 matrices, then which of the following is true? (a) $(A + B)^2 = A^2 + B^2 + 2AB$ (b) $(A - B)^2 = A^2 + B^2 - 2AF$ (c) $(A - B) (A + B) = A^2 + AB - BA - B^2$ (d) $(A + B) (A - B) = A^2 - B^2$ 27. If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$ and $A + A^T = I_2$ then α is (b) $(A - B)^2 = A^2 + B^2 - 2AB$ $(b)(2n+1)\frac{\pi}{2} \ n \in \mathbb{Z}$ $(a)\alpha = n\pi n \in Z$ $(c)\alpha = 2n\pi + \frac{\pi}{3} n \in \mathbb{Z}$ (d)None of these 28. If A = $\begin{bmatrix} i & 0 \\ 0 & i \end{bmatrix}$ then A^{4n} where n is a natural number is equal to (b) – A (a) I (c) – I (d) A 29. If $\begin{bmatrix} x+y+z\\ x+y\\ y+z \end{bmatrix} = \begin{bmatrix} 9\\5\\7 \end{bmatrix}$ then the value of (x, y, z) is (a) (4, 3, 2) (b) (3, 2, 4) (d) None of these (c) (2, 3, 4) 30. $\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 2 \\ 0 & 5 & 1 \\ 0 & 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ 1 \\ -2 \end{bmatrix} = 0$ then the value of x is (a) $-\frac{1}{2}$ (b) $\frac{1}{2}$ (d) -1(c) 1 **ANSWERS** S NO ANS HINT $A^{2} - A - 2I = 0 \Rightarrow A^{-1}(A^{2} - A - 2I) = 0 \Rightarrow A - I - 2A^{-1} = 0$ 1 а $A^2 + A = A + 2A = 3A$, As A is identity matrix so $A^2 = A$ 2 b

a Solve x + y = 4, 2x+z=7, x - y = 0, 2z+w=10 b $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ find $a_{11}, a_{12}, a_{21}, a_{22}$ using relation $a_{ij} = \frac{(i+2j)^2}{2}$

3

4

5	b	All elements above the diagonal elements are zero so, $i < j$
6	d	All the non diagonal elements are zero i.e. $i \neq j$
7	b	$(AA^T)^T = (A^T)^T A^T = AA^T$
8	b	$A^{T} = A \ AND \ A^{T} = -A \Rightarrow A = -A \Rightarrow 2A = 0$
9	с	
10	d	26
11	а	$I + A^2 + 2A - 3A = I + A + 2A - 3A = I$
12	b	
13	d	$A^{2} = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}$
14	В	$\begin{bmatrix} 5 & x \\ y & 0 \end{bmatrix} = \begin{bmatrix} 5 & y \\ x & 0 \end{bmatrix} \Rightarrow x = y$
15	b	$3a_{22} - 4a_{33} = 3(5) - 4(4) = -1$
16	а	$A^{2} = \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
17	В	As $A^2 = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, so $f(A) = I + A$
18	а	$kA = k \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix} = \begin{bmatrix} 0 & 2k \\ 3k & -4k \end{bmatrix} = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$, and equate corresponding elements
19	b	A' = -A (Skew symmetric matrix)
20	b	
21	а	
22	b	$A+A^{T} = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix} \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix} = \begin{bmatrix} 2\cos\alpha & 0 \\ 0 & 2\cos\alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
23	С	$A^{2} = I \Rightarrow \begin{bmatrix} \alpha^{2} + \gamma \beta & 0 \\ 0 & \alpha^{2} + \gamma \beta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
24	с	$a_{ij} = -a_{ji}$
25	d	
26	С	$AB \neq BA$
27	C	$\begin{bmatrix} 2\cos\alpha & 0\\ 0 & 2\cos\alpha \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \Rightarrow 2\cos\alpha = 1 \Rightarrow \alpha = 2n\pi + \frac{\pi}{3} n \in \mathbb{Z}$
28	а	Ι

9	c Solve: $x + y + z = 9$, $x + y = 5$ and $y + z = 7$
0	b $\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} x-1 \\ 3 \\ -1 \end{bmatrix} = 0 \Rightarrow \begin{bmatrix} 4x-2 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix} \Rightarrow 4x-2 = 0 \Rightarrow x = \frac{1}{2}$
	QUESTION BANK FOR APPLIED MATHS
	CLASS XII
	TOPIC: DETERMINANTS
1	$If \begin{bmatrix} 1 & -\tan\theta \\ \tan\theta & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\theta \\ -\tan\theta & 1 \end{bmatrix}^{-1} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}, then$
	(a) $a = \cos 2\theta$, $b = \sin 2\theta$ (b) $a = 1$, $b = 1$ (c) $b = \cos 2\theta$, $a = \sin 2\theta$ (d) None of these
2	(d) None of these If $A = \begin{bmatrix} 3 & 4 \\ 2 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & -2 \\ 0 & -1 \end{bmatrix}$ then $(A + B)^{-1}$
	(a) is a skew symmetric matrix (b) Does not exist (c) $A^{-1} + B^{-1}$ (d) None of these
3	If λ is the determinant of a square matrix A of order n, then the determinant of its adjoint is
	(a) λ (b) λ^n (c) λ^{n-1} (d) λ^{n+1}
4	If A and B are any two square matrices of the same order, then
	(a) $(AB)' = A'B'$ (b) $adj(AB) = adj(A) adj(B)$
	(c) $(AB)' = B'A'$ (d) $AB = 0 \Rightarrow A = 0 \text{ or } B = 0$
5	If $A = \begin{bmatrix} 1 & \tan x \\ -\tan x & 1 \end{bmatrix}$, then the value of $ A'A^{-1} $ is
	'(a) $\cos 4x$ (b) $-\cos 4x$ (c) 0 (d)1
6	A is a non-singular matrix of order 3 such that $A^2 = 3A$. then the value of $ A $ is
	(a) -3(b) 3(c) 9(d) 27If A is a square matrix of order 3 and $ A = 5$, the value of $ 2A' $ is
7	If A is a square matrix of order 3 and $ A = 5$, the value of $ 2A' $ is
0	(a) 10 (b) -10 (c) 40 (d) -40
8	If A is a square matrix of order 3 and $ A = 2$, then the value of $ -AA' $ is
	(a) 4 (b)2 (c)-2 (d) -4

9	If matrix A= $\begin{bmatrix} 2 & -1 & 3 \\ \lambda & 0 & 7 \\ -1 & 1 & 4 \end{bmatrix}$ is not invertible for	
	(a) $\lambda = -1$ (b) $\lambda = 1$ (c) $\lambda = 0$ (d) $\lambda \in R - \{1\}$	
10	If $\begin{vmatrix} 2 & 3 & 2 \\ x & x & x \\ 4 & 9 & 1 \end{vmatrix} + 3 = 0$, then value of x is	
	(a) 3 (b) 0 (c) -1 (d) 1	
11	(a) 3(b) 0(c) -1(d) 1For what value of k inverse does not exist for the matrix $\begin{bmatrix} 3 & 7k \\ 1 & -7 \end{bmatrix}$	
	(a) 3 (b) -7 (c) -21 (d)-3	
12	(a) 3 (b) -7 (c) -21 (d) -3 If $A = \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix}$, then the determinant of the matrix $A^2 - 2A$	
	(a) 25 (b) -25 (c) 0 (d)4 If $\begin{vmatrix} 2x & 5 \\ 8 & x \end{vmatrix} = \begin{vmatrix} 6 & 5 \\ 8 & 3 \end{vmatrix}$, then the value of x is	
13		
	(a) ± 3 (b) -3 (c) 3 (d) ± 2	
14	If the points (2, -3), (k, -1) and (0, 4) are collinear, then the value of k is	
	(a) $10/7$ (b) 7 (c) 10 (d) 0	
15	$\begin{array}{c c} (a) & (b) & (c) & (c)$	
	(a) $10/7$ (b) 7(c) 10 (d) 0Let $\Delta = \begin{vmatrix} 1 & \sin\theta & 1 \\ -\sin\theta & 1 & \sin\theta \\ -1 & -\sin\theta & 1 \end{vmatrix}$, where $0 \le \theta \le 2\pi$, then	
	$(a)\Delta = 0 \qquad (b)\Delta \in (2,\infty) \qquad (c)\Delta \in (2,4) \qquad (d)\Delta \in [2,4]$	
16	The maximum value of $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 + \cos \theta & 1 & 1 \end{vmatrix}$ (θ is real number)	
	(a) $\frac{1}{2}$ (b) $\frac{\sqrt{3}}{2}$ (c) $\sqrt{2}$ (d) $\frac{2\sqrt{3}}{2}$	
17	The value of the determinant $\begin{vmatrix} 0 & -a & b \\ a & 0 & c \\ -b & -c & 0 \end{vmatrix}$ is	
	(a) a (b) –a (b)b (d)0	
18	If A and B are invertible matrices of same order, then which of the following statements is not true?	
	(a) $ A^{-1} = A ^{-1}$ (b) $adj.A = A A^{-1}$	
	(c) $(A + B)^{-1} = B^{-1} + A^{-1}$ (d) $(AB)^{-1} = B^{-1}A^{-1}$	
19	If A is a non-singular matrix, then	
	'(a) $ A \neq A' $ (b) $ A^{-1} \neq A ^{-1}$ (c) $ A + A' \neq 0$ (d) $ AA' \neq A^2 $	
	1	
	83	

	Let $f(z) = \begin{bmatrix} 5 \\ 2 \\ 1 \end{bmatrix}$	$\begin{vmatrix} 3 & 8 \\ z & 1 \\ 2 & z \end{vmatrix}$, then f(5)	is equal to	
	(a) 10			(d) none of these
21	The value of	the determinant	$egin{array}{ccc} log_3512 & log_43 \ log_38 & log_49 \end{array} $ is	
	(a) 15	(b) 15/2	(c)10	(c) 0
22	If x=-9 is a ro	bot of $\begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix} =$	(c)10 = 0, then the other two	roots are
	(a) 2, 7	(b)-2, 7	(c) 1, 7 e matrix of order 3 × 3. 1	(d) none of these
23	Let A be a no	on-singular square	e matrix of order 3 × 3. T	Then adj A is equal to
	(a) A	(b)3 A	(c) $ A ^3$ order 2, then $ A^{-1} $ is equ	(d) $ A ^2$
24	If A is an inv	ertible matrix of c	order 2, then $ A^{-1} $ is equ	ial to
		$(b)\frac{1}{ A }$	(c) 0	
25	elements is e (a) Deter (b) 0 (c) 1	equal to the value rminant of matrix	-	the co-factors of corresponding
26	Roots of the		$\begin{vmatrix} 2 & 3 \\ 2 - x & 0 \\ 2 & 3 - x \end{vmatrix} = 0 \text{ are}$	
	Roots of the	equation $\begin{vmatrix} 1-x\\0\\0 \end{vmatrix}$		l) -1, -3
26 27	Roots of the (a) 1, 3 If for a matri	equation $\begin{vmatrix} 1-x \\ 0 \\ 0 \end{vmatrix}$ $(b) 1,2,3$ ix A, $A^3 = I$, then by	(c) 1, 3 (d inverse of A is	l) -1, -3
27	Roots of the (a) 1, 3 If for a matri	equation $\begin{vmatrix} 1-x \\ 0 \\ 0 \end{vmatrix}$ $(b) 1,2,3$ ix A, $A^3 = I$, then by	(c) 1, 3 (d inverse of A is	l) -1, -3) none of these
	Roots of the (a) 1, 3 If for a matri (a) A Which of the (a) Deter (b) Deter (c) Deter (d) None	equation $\begin{vmatrix} 1 - x \\ 0 \\ 0 \end{vmatrix}$ $(b) 1,2,3$ ix A, $A^3 = I$, then a (b) A^2 e following is correction formula to a square formula to a number of these	(c) 1, 3 (d inverse of A is (c) A ³ (d ect?) none of these e matrix.
27 28	Roots of the (a) 1, 3 If for a matri (a) A Which of the (a) Deter (b) Deter (c) Deter (d) None If $A^2 - A + I$	equation $\begin{vmatrix} 1 - x \\ 0 \\ 0 \end{vmatrix}$ $(b) 1,2,3$ ix A, $A^3 = I$, then a (b) A^2 e following is correction of the set	(c) 1, 3 (d inverse of A is (c) A ³ (d ect? re matrix per associated to a squar per associated to a matrix) none of these e matrix. x.
27 28	Roots of the (a) 1, 3 If for a matrix (a) A Which of the (a) Deter (b) Deter (c) Deter (d) None If $A^2 - A + I$ (a) A+I	equation $\begin{vmatrix} 1 - x \\ 0 \\ 0 \end{vmatrix}$ $(b) 1,2,3$ ix A, $A^3 = I$, then a (b) A^2 e following is correction of the set	(c) 1, 3 (d inverse of A is (c) A ³ (d ect? The matrix her associated to a squar her associated to a matrix for of A is equal to (c) A+2I (d)) none of these e matrix. x.

	ANSWERS
1	(a) Hint: $\begin{bmatrix} 1 & -\tan\theta \\ \tan\theta & 1 \end{bmatrix} \frac{1}{\sec^2\theta} \begin{bmatrix} 1 & -\tan\theta \\ \tan\theta & 1 \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ $\Rightarrow \begin{bmatrix} \frac{1-\tan^2\theta}{\sec^2\theta} & -\frac{2\tan\theta}{\sec^2\theta} \\ \frac{2\tan\theta}{\sec^2\theta} & \frac{1-\tan^2\theta}{\sec^2\theta} \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ $\Rightarrow \begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$
2	(d) Hint: $A + B = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$
	$\Rightarrow (A+B)^{-1} = \begin{bmatrix} -3 & 2\\ 2 & -1 \end{bmatrix}$
3	(c) Hint: $ adjA = A ^{n-1}$, A is matrix of order n
4	(c)
5	(d) Hint: $A'A^{-1} = \begin{bmatrix} 1 & -\tan x \\ \tan x & 1 \end{bmatrix} \frac{1}{\sec^2 x} \begin{bmatrix} 1 & -\tan x \\ \tan x & 1 \end{bmatrix}$
	$\Rightarrow A'A^{-1} = \begin{bmatrix} \cos 2x & -\sin 2x \\ \sin 2x & \cos 2x \end{bmatrix}$
6	(d) Hint: $ A^2 = 3A \Rightarrow A ^2 = 27 A $
7	(c)Hint: $ 2A' = 2^3 A' = 8(5) = 40$
8	(d) Hint: $ -AA' = -A A' = -2(2) = -4$
9	(b) Hint: $ A = 0 \Rightarrow -\lambda(-4-3) - 7(2-1) = 0 \Rightarrow \lambda = 1$
10	(c)
11	(d)-3
12	(a) 25
13	(a) ±3
14	(a) 10/7 Hint: $\begin{vmatrix} 2 & -3 & 1 \\ k & -1 & 1 \\ 0 & 4 & 1 \end{vmatrix} = 0 \Rightarrow 2(-1-4) - k(-3-4) = 0$
15	(d)Hint: $\Delta = 2(1 + \sin^2 \theta) As \ 0 \le \theta \le 2\pi \Rightarrow 0 \le \sin^2 \theta \le 1, \Rightarrow 2 \le (1 + \sin^2 \theta) \le 4$
16	(a) Hint: $\Delta = -\sin\theta\cos\theta = -\frac{\sin 2\theta}{2}$
17	(d) Hint: determinant of a skew-symmetric matrix of odd order is zero.
18	(c)

19	(c)
20	(c) Hint: $f(5) = \begin{vmatrix} 5 & 3 & 8 \\ 2 & 5 & 1 \\ 1 & 2 & 5 \end{vmatrix} = 5(25 - 2) - 3(10 - 1) + 8(4 - 5) = 80$
21	(b)Hint: $\begin{vmatrix} 9log_3 2 & log_4 3 \\ 3log_3 2 & 2log_4 3 \end{vmatrix} = \begin{vmatrix} \frac{9}{2}log_3 4 & log_4 3 \\ \frac{3}{2}log_3 4 & 2log_4 3 \end{vmatrix} = 9log_3 4log_4 3 - \frac{3}{2}log_3 4log_4 3$
22	(a) Hint: $\begin{vmatrix} x & 3 & 7 \\ 2 & x & 2 \\ 7 & 6 & x \end{vmatrix} = x^3 - 67x + 126 = (x+9)(x^2 - 9x + 14)$
23	(d)
24	(b)
25	(a)
26	(b) Hint: $\Delta = (1 - x)(2 - x)(3 - x)$
27	(b)
28	(b)
29	(d) Hint: $A^{-1}(A^2 - A + I) = A^{-1} \cdot 0 \Rightarrow A - I + A^{-1} = 0$
30	(b)

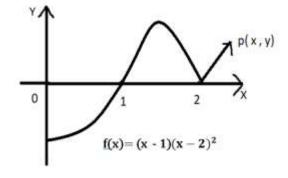
CALCULUS (APPLIED MATHEMATICS) MCQ'S

- (1.) The maximum value of $\frac{\log x}{x}$ is at a) x = e b) $x = \frac{1}{e}$ c) x = 1 d) $x = \frac{2}{e}$
- (2.) The interval in which the function $f(x)=2x^3 + 9x^2 + 12x 1$ is decreasing
 - a) $[-1,\infty)$ b) [-2,-1] c) $(-\infty,-2]$ d) [-1,-1]

(3.) A point on the straight line 2x + 3y = 6 which is closest to the origin

a) $\left(\frac{2}{13}, \frac{5}{13}\right)$ b) $\left(\frac{-12}{13}, \frac{18}{13}\right)$ c) $\left(\frac{12}{13}, \frac{18}{13}\right)$ d) $\left(\frac{12}{13}, \frac{-18}{13}\right)$

(4.) If $f(x) = x^3 - 6x^2 + 18x + 5$ is an increasing function $\forall x \in \mathbb{R}$. The value of f(x) where the rate of increase is least


a) 25 b) 21 c) 15 d) none of these
(5.) The maximum value of
$$\frac{1}{4x^2+2x+1}$$
 is at

a) $x = \frac{4}{2}$ b) $x = \frac{2}{2}$ c) x = 1d) $x = \frac{3}{4}$ (6.) If $f(x) = 2x^2 - kx + 5$ is increasing in [1,2] then k lies in the Interval (a) $(-\infty, 4)$ (b) $(4, \infty)$ (c) $(-\infty, 8)$ (d) (8,∞) (7.) The function f(x) = ax-b is strictly increasing on R if (d) none of these (a) a > 0 (b) a < 0 (c) a = 0(8.) The function $f(x) = \tan x - x$ a) Always increases b) Always decreases c) Never increases d) Never decreases **(9.)** The smallest value of the polynomial $x^3 - 18x^2 + 96x$ in [0,9] is (b) 135 (c)160 (a) 126 (d)0 (10.) Stationary points of $f(x) = 3x^4 - 8x^3 + 6x^2$ are (a) 1,0 (b) 0, 1 (c) 0,-1 (d) 1, 1

CASE STUDY

A particle is moving along the curve represented by the polynomial $f(x) = (x - 1)(x - 2)^2$ as shown in the following figure given below

Based on the above information answer the following questions

11 The critical points of polynomial f(x) are

a)
$$2, -\frac{4}{3}$$
 b) $2, \frac{4}{3}$ c) $-2, -\frac{4}{3}$ d) $-2, \frac{4}{3}$

12 The interval where f(x) is increasing is

a)
$$(-\infty, \frac{4}{3}] \cup [2, \infty)$$
 b) $(-\infty, -\frac{4}{3}] \cup [2, \infty)$ c) $[2, \infty)$ d) $(-\infty, \frac{4}{3}]$

13 The interval where f(x) is decreasing is

a)
$$\left[\frac{4}{3}, 2\right]$$
 b) $\left[-\frac{4}{3}, 2\right]$ c) $\left[0, 2\right]$ d)none of these

14. What is the minimum value of $f(x) = (x - 1)(x - 2)^2$

15. What is the point of local maxima for

$$f(x) = (x - 1)(x - 2)^2 ?$$
(a)2 (b) $\frac{4}{3}$ (c) 0 (d) - 2

16. The equation of the tangent to the curve $y = \sin x$ at (0, 0) is

(a) x + y = 0 (b) x - y = 0 (c) 2x + y = 0 (d) 2x - y = 0

17. The points at which the tangent to the curve y = x³ + 5 is perpendicular to the line x + 3y= 2 are

(a) (1, 6), (-1, 4) (b) (1, 6), (1, 4) (c) (6, 1), (4, 1) (d) (6, 1), (-1, 4)

18. The point at which the tangent to the curve $y = \sqrt{4x-3-1}$ has its slope 2/3.

(a) (3,3) (b) (3,2) (c) (2,3) (d) (2,2)

19. The lines 3x - 4y + 4 = 0 and 6x - 8y - 7 = 0 are tangents to the same circle. The radius of this circle is:

(a) 3/2 (b) $\frac{3}{4}$ (c) $\frac{4}{5}$ (d) $\frac{7}{10}$

20. Differentiate $x^2+y^2=25$ implicitly with respect to x.

(a) -x/y (b) -y/x (c) x/2y (d) 2y/x

21. If x=4z²+5 and y= 6z²+72z+3 then $\frac{d^2 y}{dx^2}$ is.

(a) $\frac{-7}{64z^3}$ (b) $\frac{7}{64z^3}$ (c) $\frac{-7}{66z^3}$ (d) *none* of these

22. The second order derivative of log_e (logx)

a).
$$\frac{-(1+\log x)}{(x\log x)^2}$$
 b) $\frac{(1+\log x)}{(x\log x)^2}$ c) $\frac{-(1+\log x)}{(\log x)^2}$ d) $\frac{-(1+\log x)}{x}$
23. If y = a xⁿ⁻¹ +b x⁻ⁿ then x² $\frac{d^2 y}{dx^2}$ is
a) n(n+1) y b) n(n-1)y c) ny d) n²y
24. If y = ax²+bx+c then y³ $\frac{d^2 y}{dx^2}$ is

a) a constant b) a function of x only c) a function of y only d)a function of x and y.

25. A toy manufacturing firm assesses its variable cost to be 'x' times the sum of 30 and 'x', where 'x' is the number of toys produced, also the cost incurred on storage is Rs 1500. the marginal cost when 20 toys are produced.

a) 60 b) 70 c) 80 d) 90

²⁶. The price per unit of a commodity produced by a company is given by p= 30 -2x and 'x' is the quantity demanded. The marginal revenue when 5 commodities are in demand (or produced).

a)10 b) 20 c) 30 d) 40

27. The cost of manufacturing x units of a certain commodity is 27+15x+3 x². The output for which AC is increasing is

a) x > 3 b) x < 3 c) x=3 d) none of these

28. The cost function for a certain commodity is $C(x) = 3+2x - \frac{1}{4}x^2$. The AVC when 4 items are produced is

- a) 1 b) 2 c) 4 d) 5
- 29. The average cost function with producing and marketing x units of an item is AC= 2x-11+50/x. The marginal cost function is

a) 4x+11 b) 4x-11 c)-11 d) none of these

30. The total cost function for x units of a commodity is $C(x) = \frac{x^3}{3} + 3x^2 - 7x + 16$. The AC is

a) $\frac{x^3}{3}$ + 3x b) $\frac{x^2}{3}$ + 3x - 7 + $\frac{16}{x}$ c) 7 + $\frac{16}{x}$ d) $\frac{x^3}{3}$ + 3x² - 7x

ANSWERS

1. let
$$y = \frac{\log x}{x}$$

$$\frac{dy}{dx} = \frac{\frac{x}{x} - \log x}{x^2} = \frac{1 - \log x}{x^2}$$

$$\frac{dy}{dx} = 0 \implies \log x = 1 \implies x = e$$

$$\frac{d^2 y}{dx^2} = \frac{x^2 (\frac{1}{x}) - (1 - \log x)(2x)}{(x^2)^2} = \frac{-3x + 2x \log x}{(x^2)^2}$$

$$\frac{d^2 y}{dx^2}|_{x=e} = \frac{-3e + 2e}{(e^2)^2} = -\frac{e}{e^4} = -\frac{e}{e^2} \le 0$$

$$\implies y \text{ is maximum at } x=0 \quad \& \text{ maximum value } \frac{\log e}{e} = \frac{1}{e}$$
Answer - Option b
$$2.$$

$$f'(x) = 6x^2 + 18x + 12 = 6(x^2 + 3x + 2)$$

$$= 6[(x+1)(x+2)]$$

$$f'(x) = 0 \qquad =) x = -1, -2$$

$$-\frac{+ve}{x} - \frac{-ve}{x} + \frac{+ve}{x}$$
For increasing $f'(x) \le 0$

$$X \in [-2, -1]$$
Answer option b

3. P (h,k) lies on the line 2h+3k-6=0 =) $k=\frac{6-2\hbar}{3}$ P(h,k) $|op| = \sqrt{h^2 + k^2} = |op|^2 = h^2 + k^2 = h^2 + (\frac{6-2h}{3})^2$ $|op|^2 = f(h)$ say =) $f(h) = h^2 + (\frac{6-2h}{2})^2$ f'(h) = $\frac{1}{9}$ [13 h^2 - 24 h + 36] f'(h) = 0 =) $h = \frac{12}{13}$ $\frac{f''(h)}{h} = \frac{12}{13} = \frac{26}{9} > 0 = f(h)$ is minimum at $h = \frac{12}{3}$ K = $\frac{6 - 2(\frac{12}{13})}{3}$ = $\frac{18}{13}$ Answer Option c) ($\frac{12}{13}$, $\frac{18}{13}$) 4. $f(x) = (x^3 - 6x^2 + 18x + 5)$ f'(x) = $3x^2 - 12x + 18 = 3(x^2 - 4x + 6) = 3[(x - 2)^2 + 2] \ge 3(0 + 2) \neq x \in \mathbb{R}$ $f'(x) \ge 6 \qquad [\because (x-2)^2 \ge 0 \forall x \in R] \qquad =) f'(x) > 0 \quad \forall x \in R$ =) f(x) is increasing function $\forall x \in R$ Now rate of increase is least when 3 [$(x-2)^2 + 2$] is least When $(x-2)^2 = 0 = x = 2$. f (2) = 25 Answer option a) 25 5. $f(x) = \frac{1}{4x^2 + 2x + 1}$ $\xrightarrow{+ve} \xrightarrow{-w} \xrightarrow{+ve} \xrightarrow$ $f'(x) = 0 = \frac{-2(4x+1)}{(4x^2+2x+1)^2}$ $f'(x) = 0 = x = -\frac{1}{4}$ =) f(x) is maximum at $x = -\frac{1}{4}$ $f(-\frac{1}{4}) = \frac{4}{3}$ answer option a) $\frac{4}{3}$ 6. $f(x) = 2x^2 - kx + 5$ f'(x) = 4x - kf '(x)> 0 4x - k > 0 $x > \frac{k}{4}$ x ε [1,2] =) $\frac{k}{4} < 1$ or $\frac{k}{4} < 2$ K< 4 k < 8 =) k < 4 =) k ϵ (- ∞ , 4) **answer** option (a) (- ∞ , 4) answer option (a) a > 0 7. a > 08. $f(x) = \tan x - x$ $f'(x) = \sec^2 x - 1$ For $x \in R$ =) $f'(x) = tan^2 x$ Answer option (A) Always increases =) f'(x) ≥ 0 $f(x) = x^3 - 18x^2 + 96x \qquad f'(x) = 3x^2 - 36x + 96$ 9.

f'(x)=0 f(4)=160 f(8)=128f(9)=135 f(x) is minimum at x = 0 in [0, 9]Answer option (d) 0 $f(x) = 3x^4 - 8x^3 + 6x^2$ f'(x) = 010. =) $12(x^3 - 2x^2 + x) = 0$ =) x = 0, 1 **Answer** option (b) (0, 1) **CASE STUDY ANSWERS** 11. $f(x) = (x - 1)(x - 2)^2$ $f'(x) = (x-1)^2(x-2) + (x-2)^2 = (x-2) [2x-2+x-2]$ f'(x) = (x-2)(3x-4)f'(x)=0 => x = 2, $\frac{4}{3}$ Answer option b) 2, $\frac{4}{3}$ 12. f'(x) = 0(X-2) (3x-4)=0 $X = \frac{4}{3}$, 2 f(x) is increasing in **Answer** option (a) $(-\infty, \frac{4}{3}]$ U $[2,\infty)$ 13. from B) critical points are - $x = \frac{4}{3}$, 2 4 answer option a)[$\frac{4}{3}$,2] $f(x) in \left[\frac{4}{3}, 2\right]$ 14. Critical points are x=2, $\frac{4}{2}$ f'(x)=(x-2)(4x-3)= $4x^2 - 11x + 6$ f''(x)= 8x - 11at x=2, f''(2) = 8(2) - 11 > 0 => f(x) has local minima at x = 2 Local minimum value for $f(2) = (2 - 1)(2 - 2)^2 = 1$ Answer option (a) 1 15. At x = $\frac{4}{2}$ $f''(\frac{4}{3}) = 8(\frac{4}{3}) - 1 = \frac{32 - 33}{3} = -\frac{1}{3} < 0$ => f(x) has local maxima at x= $\frac{4}{3}$ Answer option (b) $\frac{4}{3}$ 16.Here, $y = \sin x$ $dy/dx = \cos x$ dy/dx at x=0 is 1 So, slope = 1 \therefore Equation of tangent to the curve is y - 0 = 1(x - 0) \Rightarrow y = x \Rightarrow x - y = 0 17. Tangent to the curve $y = x^3 + 5$ m $_1=3x^2$ ---(i) Line equation $3y = 2 - x \implies y = -1/3x + 2$ $m_2 = -1/3 ---(ii)$ $m_1 \times m_2 = -1$ (for lines to be perpendicular to (ii)) $3x^2 \times (-1/3) = -1$ Now, $x^2 = 1$ $x = \pm 1$ Now, y = 1 + 5 y = 6 y = -1 + 5 = 4so Points at which these lines are perpendicular are (1, 6), (-1, 4) 18. Let us first find out f'(x) for the curve y = f(x) = $\sqrt{4x-3} - 1$. f'(x) = $\frac{d}{dx}(\sqrt{4x-3} - 1) = 2/3$ 91

 \Rightarrow X=3 then y=2. \therefore The required point is = (3, 2).

19. Since $a1/a2=b1/b2\neq c1c2$, the given pair of lines are parallel to each other.

Multiplying the first equation by 2, the two equations can be re-written as 6x - 8y + 8 = 0 and 6x - 7y - 7 = 0. The distance between them will be:

Distance= $|c1-c2|/\sqrt{a^2+b^2}=|8-(-7)|\sqrt{6^2+(-8)^2}=15/\sqrt{100}=15/10=3/2$.

This distance is the diameter of the circle: Therefore, the Radius= $1/2 \times (1/2) = 3/4$.

20. (a) 21(a) 22. (a) 23. (a) 24. (c)

25. The total cost function C(x) is given by,

 $C(x) = x (x + 30) + 1500 = x^2 + 30x + 1500$ MC is given by, MC= dc/dx= 2x+30

Marginal cost of producing 20 toys is MC (20) = dC /dx]_{x=20} = 2(20)+ 30 = 70 Ans

26. Revenue function is, $R = px = (30x - 2x^2)$ MR= 30-4x

MR when 5 commodities are in demand is Rs 10.

27. x > 3 28. 1 29. 4x - 11 30. $\frac{x^2}{3} + 3x - 7 + \frac{16}{x}$

PROBABILITY (MCQ's)

k.

Q.1 Let x be a discrete random variable whose probability distribution is defined as follows:

$$P(X = x) = \begin{cases} k(x + 1), & for \ x = 1,2,3,4 \\ 2kx, & for \ x = 5,6,7 \\ 0, & otherwise \end{cases}$$
(a) 1/50 (b) 2/50 (c) 3/50 (d) 4/50

0.2 For the following probability distribution:

Х	-4	-3	-2	-1	0
P(X)	0.1	0.2	0.3	0.2	0.2
The value of l	E(X) is.				
(a) 0	(b)	-1	(c) -2	(d) -1.8	}
	11	1 1. 11	·1		

Q.3 For the following probability distribution:

Х	1	2	3	4	
P(X)	1/10	1/5	3/10	2/5	
ho voluo	of $E(V^2)$ is	· ·	<u> </u>	· ·	

The value of E(X²) is.

(a) 5	(b) 10	(c) 15	(d) 20

Q.4 A random variable X takes the values 0, 1, 2, 3 and its mean is 1.3. If P(X=3) = 2P(X=1) and P(X=2) = 0.3, then P(X=0) is

(a) 0.1	(b) 0.2	(c) 0.3	(d) 0.4
Q.5 For 6 trials of = P(X=2). Find the	-		iable which satisfies the relation 9P(X=4)
(a) 1/4	(b) 1/3	(c) 1/2	(d) 1/9
Q.6 Which of the f	following is true:		
(a) Mean <	Variance	(b) Mean > Variance	
(c) Mean =	Variance	(d) None of these	
Q.7 If the probal distribution of de	•		e mean and standard deviation for the
(a) 4.71	(b) 5.71	(c) 6.71	(d) 7.71
Q.8 What is the ex	spectation of the	number of heads in 15	5 tosses of a coin?
(a) 4.7	(b) 5.7	(c) 6.7	(d) 7.5
-		es, obtain the mean an 4 is considered a s	and the variance of the distribution of uccess.
(a) 10, 5/3	(b) 15, 3/5	(c) 10, 3/5	(d) 15, 5/3
Q.10 Which one is	s not a requireme	nt of a binomial distri	bution?
(a) There a	are 2 outcomes fo	or each trial	
(b) There a	are a fixed numbe	er of trials	
(c) The ou	tcomes must be d	lependent on each oth	ier
(d) The pr	obability of succe	ess must be the same f	or all the trials.
Q.11 In a binomia 3. Then, its mean		e probability of gettin	ig success is $\frac{1}{4}$ and standard deviation is
(a) 6	(b) 8	(c) 12	(d) 10
Q.12 Let X denote and P(X=6) are in			n tosses of a fair coin. If P(X=4), P(X=5)
(a) 7, 14	(b) 10, 14	(c) 12, 7	(d)14, 12
Q.13 if in a binom	ial distribution n	= 4, P(X=0) = 16/81, 1	then P(X=4) equals
(a) 1/16	(b) 1/81	(c) 1/27	(d)1/8
Q.14 If X is a bir	nomial variable v	vith parameters n an	d p, where $0 such that \frac{P(X=r)}{P(X=n-r)} is$
independent of n			
		93	
		44	

(a) 1/2	(b) 1/3	(c) 1/4	(d)1	/8		
Q.15 the probabilit	ty of selection a r	nale or a female	is same. If the p	robability that in an office of		
n persons (n-1) males being selected is $\frac{3}{2^{10}}$, the value of n is						
(a) 5	(b) 3	(c) 10	(d)1	2		
Q,16 If the probability that an individual suffers a bad reaction from injection of a given serum is 0.001, determine the probability that out of 2000 individuals exactly 3 individuals will suffer from a bad reaction(use e^{-2} =0.1353):						
(A) 0.18	(B) 1.1	18	(C) 0.195	(D) 2.180		
Q.17 Suppose that	X has a Poisson d	istribution. If P($[X=2] = \frac{2}{3} P(X=1)$,	then the value of P(X=0) is:		
(A) e^{-4}	(B) e	4/3	(C) $e^{-2/3}$	(D) $e^{4/3}$		
Q.18 If X is a norma then value of P(X<		ndom variable w	with mean μ =10 a	and standard deviation σ =2,		
(A) 0.0014	(B) 0.	993	(C) 1.5	(D) 0.9332		
salary is Rs. 4000 a	Q.19 The monthly salaries of workers in a certain factory are normally distributed. The mean salary is Rs. 4000 and standard deviation is Rs. 450. If 668 workers are getting salary less than Rs. 3325, the total number of workers in the factory are:					
(A) 1000	(B)1	0000	(C)45000	(D)15000		
Q.20 If the variance	e of a Poisson dis	tribution is 2 , th	nen P(X=2) is:			
(A) $\frac{2}{e^2}$	(B) 2e	2 ²	(C) $\frac{4}{e^2}$	(D) $4e^2$		
Q.21 If Z is a standa	ard normal varial	ole , then P(0< 2	Z < 1.7) is equal	to:		
(A) F(0) – F	(1.7) (B)	F(1.7) – F(0)	(C) 1 - F(1.	7) (D) F(1.7) – 1		
Q.22 If X is a Poiss	on variable such	that P(X=k) = P(X=k+1) , then va	riance of X is:		
(A) k – 1	(B) k		(C) k + 1	(D) k + 2		
Q.23 The area und	er the standard n	ormal curve wh	ich lies to the rig	ht of z = - 0.66 is:		
(A)1-F(0.6	(B) (B)	F(0.66) - 1	(C) F(0.66)	(D) F(-0.66)		
Q.24 If F(Z) is a cur	mulative distribu	tion function , th	ien the value of F	$F(\infty)$ is:		
(A) 0	(B) 1		(C) 2	(D) 0.5		
Q.25 If X is normal variable Z correspo	•		standard deviati	on 4, then standard normal		
(A) 1.25	(B) -	- 1.25	(C) – 0.25	(D) 0.25		
Q.26-30 (Case study question) : An urn contains 25 balls of which 10 balls bear a mark X and remaining 15 bear a mark Y. A ball is drawn at random from the urn, its mark noted down and it is replaced. In this way 6 balls are drawn.						

Based on the above information, answer the following questions (26-30):

Q.26 The probability that all balls will bear X mark is

(A)
$$\left(\frac{3}{5}\right)^6$$
 (B) $\left(\frac{2}{5}\right)^6$ (C) $1 - \left(\frac{3}{5}\right)^6$ (D) $1 - \left(\frac{2}{5}\right)^6$

Q.27 The probability that all balls will not bear X mark is

(A)
$$\left(\frac{3}{5}\right)^6$$
 (B) $\left(\frac{2}{5}\right)^6$ (C) $1 - \left(\frac{3}{5}\right)^6$ (D) $1 - \left(\frac{2}{5}\right)^6$

Q.28 The probability that at most 2 balls will bear mark Y is

(A)
$$7\left(\frac{2}{5}\right)^4$$
 (B) $7\left(\frac{3}{5}\right)^4$ (C) $7\left(\frac{2}{5}\right)^2$ (D) $7\left(\frac{3}{5}\right)^2$

Q.29 The probability that at least 2 balls will bear mark Y is

(A)
$$\frac{14652}{15625}$$
 (B) $\frac{2997}{3125}$ (C) $\frac{2897}{3125}$ (D) $\frac{14562}{15625}$

Q.30The probability that the number of balls with X mark and Y mark will be equal is

(A)
$$\frac{684}{3125}$$
 (B) $\frac{486}{3125}$ (C) $\frac{864}{3125}$ (D) $\frac{486}{625}$

Answer **PROBABILITY**

TOPIC- DISCRETE TRANDOM VARIABLE AND ITS PROBABILITY DISTRIBUTION

Q.No.	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
Ans.	(a)	(d)	(b)	(d)	(a)	(b)	(C)	(d)	(a)	(C)
Q.No.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
Ans.	(c)	(a)	(b)	(a)	(d)	(a)	(b)	(d)	(b)	(a)
Q.No.	21.	22.	23.	24.	25.	26.	27.	28.	29.	30.
Ans.	(b)	(C)	(C)	(b)	(d)	(b)	(d)	(a)	(b)	(C)

<u>Ans.1</u>

The sum of the probabilities in a probability distribution is 1.

So, P(x=10 + P(x=2) + P(x=3) + P(x=4) + P(x=5) + P(x=6) + P(x=7) = 1

So, 2k + 3k + 4k + 5k + 10k + 12k + 14k = 1 or 50k = 1 0r k = 1/50 Ans. *Ans.2*

Since,
$$E(X) = X.P(X) = (-4)x(0.1) + (-3)x(0.2) + (-2)x(0.3) + (-1)x(0.2) + (0)x(0.2)$$

= -1.8 Ans.

<u>Ans.3</u>

Since, $E(X^2) = \sum P \cdot X^2 = \frac{1}{10} \cdot 1^2 + \frac{1}{5} \cdot 2^2 + \frac{3}{10} \cdot 3^2 + \frac{2}{5} \cdot 4^2 = \frac{100}{10} = 10$ Ans. Ans.4 Let P(X=0) = x and P(X=1) = p, so P(X=3) = 2p $X: 0 \quad 1 \quad 2 \quad 3$ $P(X): x \quad p \quad 0.3 \quad 2p$

 $E(X) = \sum X \cdot P(X) = 0(x) + 1(p) + 2(0.3) + 3(2p)$ p = 0.1 Since $\sum P(X) = 1$ 1.3 = 7p + 0.6So, x + p + 0.3 + 2p = 1x = 0.7 - 3p = 0.7 - 0.3 = 0.4 Ans. Ans.5 Since $P(X = r) = {}^{n}_{r}Cp^{r}q^{n-r}$ $P(X = r) = {}_{r}^{6}Cp^{r}q^{6-r}$ Since n = 6. It is given that 9P(X=4) = P(X=2) $9_4^6Cp^4q^2 = {}_2^6Cp^2q^4$ or $9p^2 = q^2$ So, 3p = q 3p = 1-p or $p = \frac{1}{4}$. Ans. Ans. 6 Let X be a binomial variable with parameters n and p. Then, Mean = np and Variance = npg Mean – Variance = np – npq = np(1 - q) = np² $(n \in N, p > 0 \therefore np^2 > 0)$ Mean – Variance > 0 Mean > Variance. Ans. Ans. 7 We have n = 500 and p = 0.1Mean = np = 500x0.1 = 50 $SD = \sqrt{Variance} = \sqrt{npq} = \sqrt{500X0.1X0.9} = 6.71$ Ans. 8 Let p be the probability of getting a head in a single toss. Then, p = $\frac{1}{2}$ and n = 15 So, expectation = E(X) = np = 15x1/2 = 7.5 Ans. Ans.9 Given n = 12 and let p = probability of getting a total greater than 4 in a single throw of a pair of dice. p = 1 – probability of geeting a totgal less than or equal to 4 p = 1 - 6/36 = 5/6or q = 1 - p = 1 - 5/6 = 1/6Mean = np = 12x5/6 = 10 Ans. Variance = npq = 12x5/6x1/6 = 5/3 Ans. **Ans**. 10 The outcomes are independent in binomial distribution. **Ans**.11 Given p = ¼ so, q = 1 – p = 1- ¼ = ¾ and S.D. = 3 S.D. = $\sqrt{npq} = \sqrt{Mean X q}$ $3 = \sqrt{Mean X q}$ Mean = $3^2 / q = 9x4/3 = 12$ Ans. **Ans**. 12 Since, P(X=4), P(X=5) and P(X=6) are in AP So 2.P(X=5) = P(X=4) + P(X=6) $2. {}^{n}_{5}Cp^{5}q^{n-5} = {}^{n}_{4}Cp^{4}q^{n-4} + {}^{n}_{6}Cp^{6}q^{n-6}$ $2. {}^{n!}_{(n-5)!5!}pq^{-1} = {}^{n!}_{(n-4)!4!}q^{-2} + {}^{n!}_{(n-6)!6!}p^{2}$ ${}^{2pq^{-1}}_{(n-5).5} = {}^{q^{-2}}_{(n-4)(n-5).5} + {}^{p^{2}}_{6.5} \text{ since } p = q = {}^{1}\!\!/_{2}$ From this n = 7, 14 Ans. **Ans**. 13 ${}^4_0Cp^4q^0 = {16\over 81}$ Given n = 4, P(X=0) = 16/81 $p^4 = \frac{16}{81}$ so, p = 2/3 and q = 1 - p = 1/3 $P(X=4) = \frac{4}{4}Cp^0q^4 = q^4 = \left(\frac{1}{3}\right)^4 = \frac{1}{81}$ Ans. **Ans**. 14 Given that $\frac{P(X=r)}{P(X=n-r)}$ is independent of n and r and

 $\frac{{}_{r}^{n}Cp^{n-r}q^{r}}{{}_{r}^{n-r}Cp^{r}q^{n-r}} = \left(\frac{p}{q}\right)^{n-2r}$ since it is independent of n and r so, n – 2r = 0 So, p/q = 1 or p = q so, $p = \frac{1}{2}$ Ans. **Ans**. 15 Given P(male) = P(female) = $\frac{1}{2}$ = p = q. And P(X=n-1) = $\frac{3}{2^{10}}$ ${}_{n-1}^{n}Cp^{n-(n-1)}q^{n-1} = \frac{3}{2^{10}}$ $n\frac{1}{2}\left(\frac{1}{2}\right)^{n-1} = \frac{3}{2^{10}}$ $\frac{n!}{(n-(n-1))!(n-1)!}pq^{n-1} = \frac{3}{2^{10}}$ $\frac{n}{2^n} = \frac{3}{2^{10}} = \frac{12}{2^{12}}$ so, n = 12 Ans. **Ans**. 16-N=2000, p=0.001 ,r=3 then ≻=np=2000x0.001=2 Using Poisson approximation, $P(X=r) = \frac{\lambda^r e^{-\lambda}}{r!}$ $P(3) = \frac{2^{3}e^{-2}}{3!} = 0.180$ Correct option is (A) **Ans** 17 $\therefore \frac{\lambda^2 e^{-\lambda}}{2!} = \frac{2}{3} \frac{\lambda^1 e^{-\lambda}}{1!}$ Given that $P(X=2) = \frac{2}{3} P(X=1)$ $\times = \frac{4}{3}$ hence, $P(X=0) = e^{-4/3}$ Correct option is (B) **Ans** 18 Given that $\mu = 10$, $\sigma = 2$ then $Z = \frac{X - 10}{2}$ for X = 13, $Z = \frac{13 - 10}{2} = 1.5$ $\therefore P(X < 13) = P(X < 1.5) = F(1.5) = 0.9332$ Correct option is (D) <u>Ans</u> 19 Given that μ =4000 , σ =450 then Z= $\frac{X-4000}{450}$ for X=3325, Z= $\frac{3325-4000}{450}$ = - 1.5 $\therefore P(X < -1.5) = P(X < -1.5) = F(-1.5) = 1 - F(1.5) = 1 - 0.9332 = 0.0668$ Now, 0.0668 x n = 668 then n = 10000Correct option is (B) **Ans** 20 Given $\lambda = 2$, X=r=2 $P(X=2) = \frac{2^2 e^{-2}}{2!} = \frac{2}{e^2}$ Correct option is (A) **Ans** 21 P(0 < Z < 1.7) = F(1.7) - F(0)Correct option is (B) **Ans** 22 P(X=k)= P(X=k+1) then $\frac{\lambda^k e^{-\lambda}}{k!} = \frac{\lambda^{k+1} e^{-\lambda}}{(k+1)!}$ Then $\lambda = k+1$ Correct option is (C) **Ans** 23 Correct option is (C) F(0.66) **Ans** 24 Correct option is (B) : $F(\infty) = 1$ **Ans** 25 for X=21, $Z = \frac{21-20}{4} = 0.25$ Correct option is (D)

INDEX NUMBERS AND TIME BASED SERIES (MCQ's)

- Index numbers are free from a unit of measurement because the index number shows

 (a) Average changes
 (b) Variations
 - (c) Relative Changes (d) None of these.
- 2. Base period always –

- (a) Normal Period
- (b) Abnormality should be present in the base period
- (c) Base period should be far ago
- (d) None of the above
- 3. Simple average of relatives is equal to :-

(a)
$$\frac{P_1}{P_0} \times 100$$

(b) $\frac{\Sigma P_1}{\Sigma P_0} \times 100$
(c) $\Sigma \left(\frac{P_1}{P_0}\right)$
(d) $\frac{1}{N} \Sigma \left(\frac{P_1}{P_0}\right) \times 100$

- 4. If all the values are not equal importance the index number is called :
 - (a) Simple
 - (b) Unweighted
 - (c) Weighted
 - (d) None

5. The most appropriate average in averaging the price relatives are:-

- (a) Median
- (b) Harmonic mean
- (c) Arithmetic mean
- (d) Geometric mean
- 6. Index Number for base year is always considered as ----
 - (a) 100 (c) 201
 - (b) 101 (d) 1000
- 7. Index number is a special type of
 - (a) Average
 - (b) Dispersion
 - (c) Correlation
 - (d) None of these
- 8. The prices of a commodity in the year 1975 and 1980 were 25 and 30 respectively taking 1980 as base year the price relative is :-
 - (a) 110.25
 - (b) 113.25
 - (c) 109.78
 - (d) None of these
- 9. From the following data for the 5 groups combined

Group	Weight	Index No.
Food	35	425
Cloth	15	235
Power & Fuel	20	215
Rent & Rates	8	115

Miscellaneous	22	150	1
		150	
The general index i (a) 270		268.5	
(a) 270 (b) 269.2		208.5	
10. Index numbers are		272.5	
(a) Forecasting	,		
(b) Fixed prices			
(c) Different price	S		
(d) Constant prices	S		
11. A fire in a factory of		duction for some	e time is
(a) Long term tend	ł		
(b) Cyclic trend			
(c) Seasonal trend			
(d) Irregular trend		2002 Compare	1 - 2001 If among agate Do 16 50 per ba
in 2002 what did it	-	-	ed to 2001. If sugar costs Rs. 16.50 per kg
(a) Rs. 15 per Kg.	. COSt III 200.	(c) Rs. 14.85	ner Ka
(b) Rs. 18.5 per Kg.	ŗ	(d) Rs. 13.75	
13. Seasonal Variation	-		per ng.
(a) Short term			
(b) Long term			
(c) Sudden			
(d) None of these			
-	values 15, 24	4, 18, 33, 42 the t	hree years moving averages are:
(a) 19, 22, 33			
(b) 19, 25, 31			
(c) 19, 30, 31 (d) 19, 25, 33			
	w number =	140 Daasche's i	ndex number = 90 then Fisher's index
number is	X IIUIIIDei – .	100, raasuie s ii	adex number = 70 then risher 5 maex
(a) 90			
(b) 120			
(c) 140			
(d) 160			
16. The time reversal	test is satisfi	led by	
(a)Simple aggregati	ve method		
(b) Fisher's method	L		
(c)both (a) & (b)			
(d) None of these			
17. The time reversal	test is not sa	atisfied by	
(a)Simple aggregat	tive method	(c)Pa	aasche's method
		99	

(b) Laspeyre's method

(d)both (b) & (c)

18. If the index number of current year is computed on the basis of base year (P_{01}) and again the index number of base year is computed on the basis of current year (P_{10}) then

(a) $P_{01} \times P_{10} = 1$

- (b) $P_{01} \times P_{10} = 2$
- (c) $P_{01} \times P_{10} = \frac{1}{2}$

(d)None of these

19. A small industrial concern used three raw materials A,B and C in its manufacturing process. The prices of the materials was as shown below

Commodities	Price in Rs. in the year 2005	Price in Rs. in the year 2015
A	4	5
В	60	57
С	36	42

Using 2005 as the base year ,then a simple aggregate price index for 2015 is

(a)102

(b)106

(c)107

(d)104

20. A fire in a factory delaying production for some time is

(a)Long term trend	(c) Seasonal trend
--------------------	--------------------

- (b)Cyclical trend (d) Irregular trend
- **21.** The rise in prices before Diwali is an example of
 - (a)Seasonal trend (c)Seasonal trend
 - (b)Cyclical trend (d)Irregular trend
- **22.** Time series analysis helps to
 - (a)Plan future operations
 - (b)Understand the behaviour of a variable in the past.
 - (c)Predict the future behaviour of a variable

(d)All of the above.

23. Irregular variations in a time series are cau	sed by			
(a) Lockouts and strikes (1	b) Epidemics			
	d) All of these			
24. If the price index is 132, It means that price	e has increased bycompared to base			
period				
	b) 32%			
	1) 8%			
25. If the price index is 87, It means that price has	is decreased bycompared to base			
period	(1) 220/			
	(b) 32%			
(c) 13% 26. Seasonal variations are	(d) 8%			
(a) Short term (c) Sudden				
(b) Long term (d) None of	thes			
27. Which index number is called ideal index num				
(a) Laspeyre's (b) Paasch				
(c) Fisher's (d) None of				
28. If $\sum p_1 q_0 = 623$, $\sum p_1 q_1 = 517$, $\sum p_0 q_0 = 584$				
number(P_{01}) (approx.) is				
(a)106.23 (b) 106.52				
(c) 106.74 (d) 106.34				
29. Unit test is not satisfy by				
(a)Simple aggregative method (b) Laspeyre's method				
(c) Paasche's method (d) None of	these			
30. The Paasche's index number is $\sum_{n=1}^{n} a_n$	$\sum n d$			
	$\frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100$			
(c) $P_{01} = \frac{\sum p_1 w}{\sum p_0 w} \times 100$ (d) None	of these			
Answe	ers			
1. (c), Index numbers are unit – free meas				
numbers are based on a value of 100, wh	ich makes it easy to measure percent changes			
2. (a) 3. (d) 4.(c)	5.(d) 6. (a) 7.(a)			
8. (d), $\frac{P_n}{P_o} \times 100$, Then $\frac{25}{30} \times 100 = 83$.	.33			
9. (b) Group Weight index number = $\frac{\text{Weig}}{\text{Total}}$	$\frac{\text{hted index}}{\text{al Weight}} = \frac{26920}{100} = 269.2$			
10. (a) 11. (d) 12. (a)	13.(a) 14.(b) 15.(b)			
16.(c) 17.(d) $18.(a)$				
19.(d) find $\sum p_0$, $\sum p_1$ & using $P_{01} = \frac{\sum p_1}{\sum p_0} \times 100$				
20.(d)21.(a)22.(d)26.(a)27.(c)28.(c),Using	Fisher's price index formula			
29.(a) 30.(b)				